GlucOS: Security, correctness, and simplicity for automated insulin delivery

Hari Venugopalan, Shreyas Madhav Ambattur Vijayanand, Caleb Stanford, Stephanie Crossen and Samuel T. King

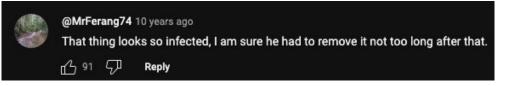
/ˈbīōˌhakər/

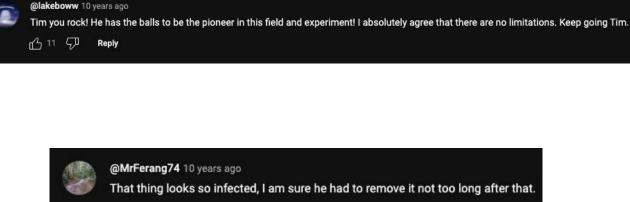
Noun

- 1. A person who manipulates their metabolic state using sensors, injected hormones, nutrients, physical activity, computer systems, and AI
- 2. An enthusiastic and curious person who learns about their own biology and metabolism through experimentation on themself
- 3. A person who uses computers to gain access to someone's metabolic state

@lakeboww 10 years ago

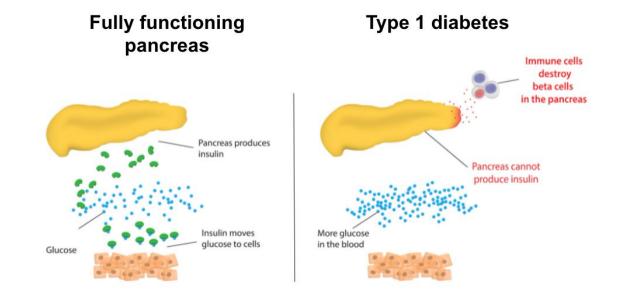
Tim you rock! He has the balls to be the pioneer in this field and experiment! I absolutely agree that there are no limitations. Keep going Tim.



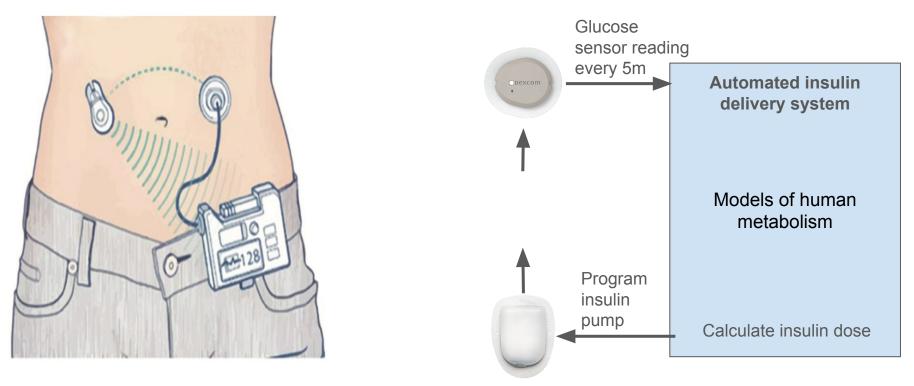

@lakeboww 10 years ago

Tim you rock! He has the balls to be the pioneer in this field and experiment! I absolutely agree that there are no limitations. Keep going Tim.

凸 11 ワ Reply



8.4 million people live with type 1 diabetes and they're the most hardcore Biohackers


Reply

16 91 57

Overview of type 1 diabetes

Automated insulin delivery systems

ML to calculate insulin doses?

• •	<mark>Google</mark> Scholar	Al type 1 diabetes
A	rticles	Abo(t 2,600,000) esuits (0.14 sec)
Si Si Si	ny time ince 2024 ince 2023 ince 2020 ustom range	Artificial intelligence in decision support systems for type 1 diabetes NS Tyler, PG Jacobs - Sensors, 2020 - mdpi.com review of computational and artificial intelligence-based decision systems into general categories of (1) those which recommend the artificial intelligence methods used for each type of ☆ Save 奶 Cite Cited by 64 Related articles All 10 versions 診
	ort by relevance ort by date	[HTML] An artificial intelligence decision support system for the management of type 1 diabetes NS Tyler, CM Mosquera-Lopez, LM Wilson Nature, 2020 - nature.com
	ny type eview articles	Type 1 diabetes (T1D) is characterized by pancreatic beta cell dysfunction and insulin depletion. Over 40% of people with T1D manage their glucose through multiple injections of long ☆ Save 切 Cite Cited by 102 Related articles All 5 versions
~	include patents	[HTML] Insulin dose optimization using an automated artificial intelligence -based decision support system in youths with type 1 diabetes
	Create alert	R Nimri, <u>T Battelino</u> , LM Laffel, RH Slover, <u>D Schatz</u> Nature medicine, 2020 - nature.com people with type 1 diabetes do not achieve their glycemic goals 1 artificial intelligence -based decision support system (AI -DSS trial in 108 participants with type 1 diabetes , aged 10–21 23 Save 55 Cite Cited by 155 Related articles All 7 versions

Current automated insulin delivery systems do NOT use the most advanced ML, like deep neural networks!...

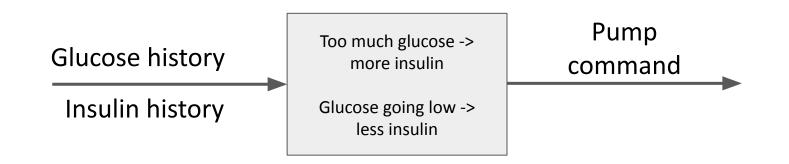
ML will always make mistakes in ways that are difficult to anticipate

DIGITS

Google Mistakenly Tags Black People as 'Gorillas,' Showing Limits of Algorithms In 2016, Microsoft's Racist Chatbot Revealed the Dangers of Online Conversation > The bot learned language

ARTIFICIAL INTELLIGENCE LinkedIn's job-matching AI was biased. The company's solution? More AI.

> Chatbots May 'Hallucinate' More Often Than Many Realize


GlucOS: End-to-end system for trustworthy insulin delivery

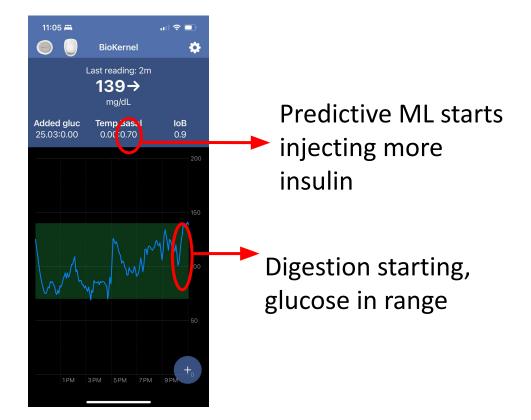
- Algorithmic security
- Driver security
- End-to-end security incorporating formal methods
- Keeping humans in the loop

Design, implement, and deploy a system on real humans to help manage their Type 1 Diabetes

Algorithmic Security

Reactive models

- Pros: Simple and safe
- Cons: Slow and thus poor control


Scenario from a real user who ate a snack at around 9pm but doesn't have enough insulin on board for full digestion

Digestion starting, glucose in range

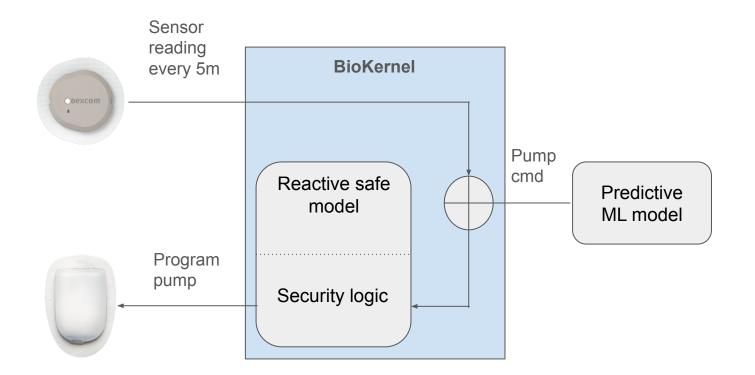
Insight for ML security

All correct insulin dosing algorithms will dose the same amount over a long enough time

Insight for ML security

All correct insulin dosing algorithms will dose the same amount over a long enough time

But the timing of when you inject matters A LOT

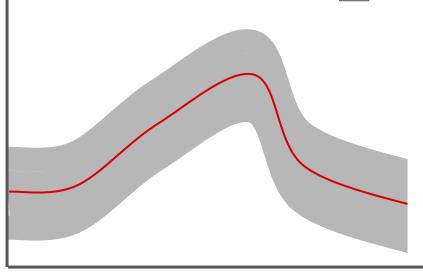

Insight for ML security

All correct insulin dosing algorithms will dose the same amount over a long enough time

But the timing of when you inject matters A LOT

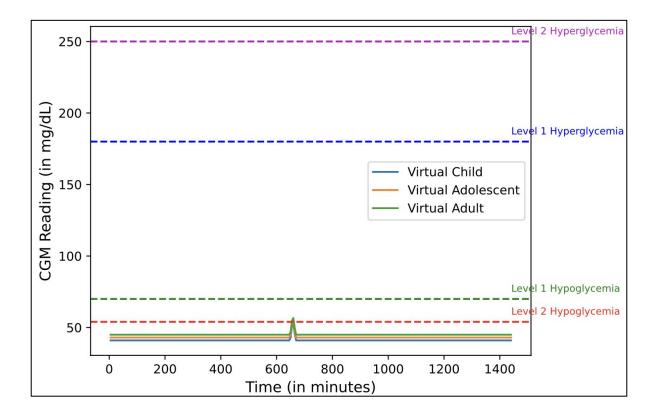
Rather than getting rid of the reactive safe model, we repurpose it for security

ML security architecture

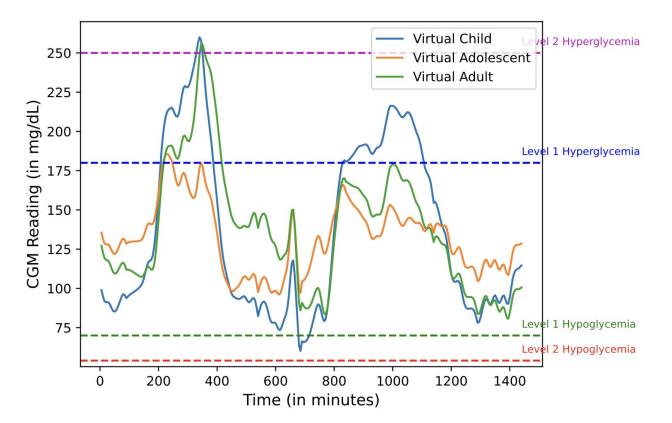


Bound ML predictions with reactive safe model

Reactive safe model

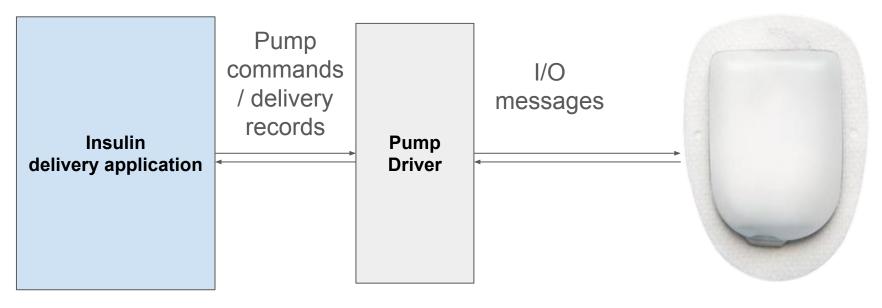

Bounds for predictive ML

Insulin

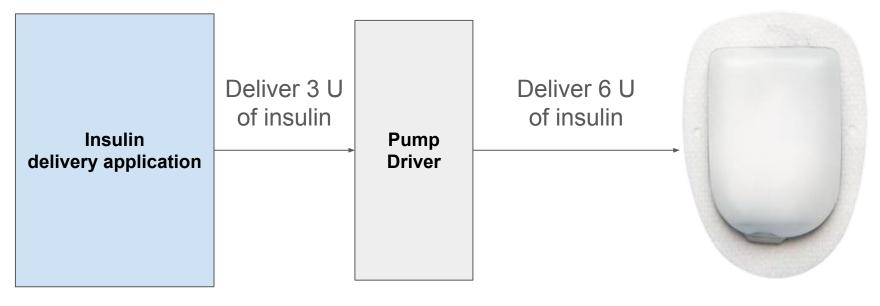


Time

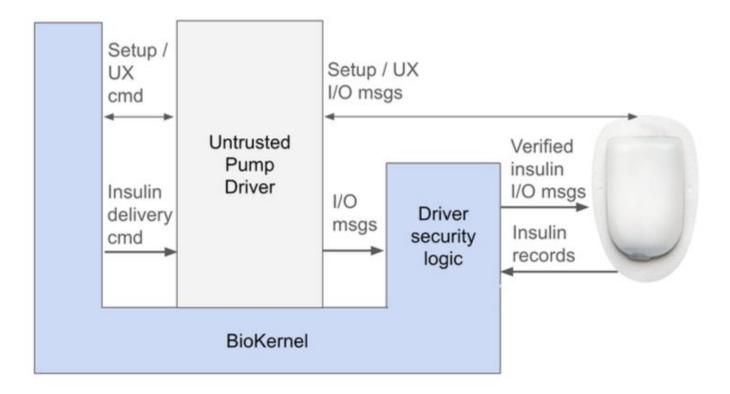
Malicious model killed several virtual humans



Even with a fully malicious predictive model, GlucOS keeps individuals in range


Driver Security

Insulin pump drivers


Insulin pump

Buggy / malicious pump drivers

Insulin pump

Driver security mechanism

Simulators do not model pump drivers

End-to-end Security: Biological invariant

Biological invariant

$|g_{\text{measured}} - g_{\text{predicted}}| < 30 \text{mg/dl}$

Biological invariant

$|g_{\text{measured}} - g_{\text{predicted}}| < 30 \text{mg/dl}$

$$|g_{
m measured} - g_{
m actual}| < 5 {
m mg/dl}$$

Biological invariant

$$|g_{
m measured} - g_{
m predicted}| < 30 {
m mg/dl}$$

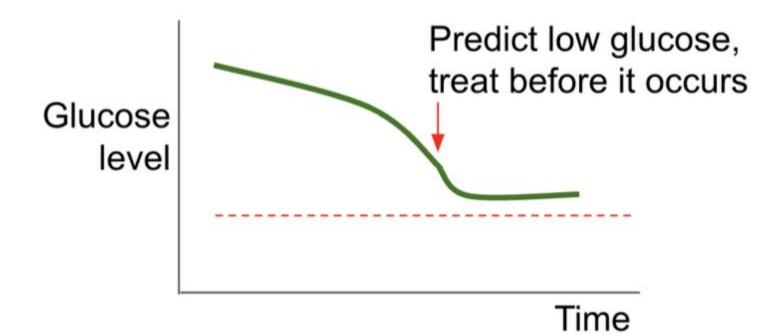
$$|g_{\text{measured}} - g_{\text{actual}}| < 5 \text{mg/dl}$$

 $|g_{\text{measured}} - g_{\text{predicted}}| < 35 \text{mg/dl}$

Real-world vs. simulation

• Current simulators do not capture fluctuations to insulin sensitivity

• On an individual using GlucOS, we observed violations to the biological invariant occurring 1.6k times over a 2 month period


Keeping humans in the loop

Humans form the last level of defense

• Certain situations require humans to intervene

• E.g., humans have to eat food to lift up their glucose levels if they're too low

Predictive alerting and personalization

Should alerting be incorporat ed within our TCB?

 We initially chose to keep alerting outside our TCB for simplicity

 However, communication channels provided by iOS introduced complications, where individuals did not receive alerts when they lost connectivity

• We incorporate alerting within the TCB in our current implementation but highlight the need for additional communication channels for health

Impact on real humans

- Individual using GlucOS had their tightest ever control
 Matched that of non-diabetics
 - Matched that of non-diabetics
- They also faced significantly lower cognitive load
- We also report tighter control across all participants in our user study

• All participants also reported significantly lowered cognitive load

Conclusion

• People with T1D can live longer than their peers

• Biohacking software grounded in security first principles can pave the way for increased longevity for all individuals

Thank you.

Please email your questions to:

hvenugopalan@ucdavis.ed

<u>u</u>

or <u>smvijay@ucdavis.edu</u>

