
 

Fig. 1: Unified DRAM cache and main memory configuration (left), and disaggregated DRAM cache and main memory configuration (left).  

 

 

Abstract— The increasing growth of applications’ memory demands has led the CPU vendors to deploy diverse memory 

technologies either within the same package such as heterogenous memory systems, or in disaggregated form through local or 

remote memory nodes. As these new memory technologies emerge, the conventional memory managements should be 

reconsidered to better meet the applications memory requirements. However, there is not a suitable model available in the 

community to accurately study these new systems. In this work we describe our contribution toward a cycle-level analysis model 

of heterogenous memories in gem5 simulator. We believe this work enables the community to perform a design space exploration 

for the next generation of memory systems. 

1. Introduction 

Today’s computing systems must meet the large processing power and memory capacity demands of a broad range of applications 

including ML, AI, graph analytics, etc. To provide both high-performance and high-capacity memories to fulfill these applications’ 

memory requirements, vendors have moved to heterogeneous memory systems where the processing units are provided with multiple 

memory technologies.  Moreover, new interconnect technologies such as compute express link (CXL) are becoming mainstream to 

expand the capacity of local memories by attached devices. For instance, Intel’s Sapphire Rapids will provide HBM, DDR, 3DXPoint, 

and CXL support within the same package. Another trend in this regard is disaggregated memory systems where they can provide 

multiple memory technologies in their local/remote memory nodes. As these new memory systems emerge, we need to rethink the 

memory management conventions. However, there is a lack of modeling support in the community to study these memory technologies. 

Thus, in this work we explain our contribution to high-fidelity heterogenous memory system modeling. 

Systems like Intel’s Knights Landing, Cascade Lake, and Sapphire Rapids can be configured to use high bandwidth memory as a cache 

to main memory. Anticipated disaggregation of memory resources also necessitates using local DRAMs as a cache to a large pool of 

remote memory. Thus, we developed a cycle-level DRAM cache controller model for gem5 [1]. The protocol is inspired by the actual 

hardware providing DRAM cache, such as Intel’s Cascade Lake where DRAM cache is designed as a direct-mapped, insert-on-miss, 

and write-back cache. This model can be configured in two modes. First, as a unified DRAM cache and memory controller, where a 

DRAM cache and a main memory are connected through a shared bus. Second, as a disaggregated DRAM cache controller where a 

main memory is managed separately and connected to the DRAM cache through a port or a configurable link. Figure 1 shows these 

configurations. Our controller model implements the timing and micro-architectural details enforced by the memory technologies 

employed as the cache and the backing store. This enables a cycle-level full system analysis of the emerging memory systems, which 

is not possible by prior works. 
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2. Evaluation 

We verified our DRAM cache model against the performance of Intel’s Cascade Lake 

studied by Hildebrand et. al [2]. Here we show performance of the unified DRAM cache 

controller (UDCC) which aligns well with the Cascade Lake’s architecture. First, we 

compare the effective bandwidth (observed by the last level cache (LLC)) for gem5’s 

default memory controller (DMC) and UDCC. We used a synthetic read traffic pattern 

such that lead to 100% hit ratio. Figure 2 (top) compares these bandwidth numbers to the 

theoretical peak of DDR4 (act as DRAM cache) and shows the similarity in observed 

bandwidth (controllers’ scheduling policy explains the slight differences). Moreover, we 

calculated the access amplification values for UDCC by dividing the effective bandwidth 

by the sum of the average bandwidth of DRAM cache and backing store devices for a 

particular run. The comparison of the two access amplification values is shown in Figure 

2 (bottom). Our results match the actual hardware in all cases with one exception, write 

misses. In actual hardware, on a write miss in DRAM cache, the block is first allocated 

by reading it from backing store and then writing it into DRAM cache. The actual data is 

then written into the DRAM cache. We merge these two writes; thus, our model leads to 

one less access than the actual hardware for a write miss. 

The disaggregated DRAM cache configuration also matched the expected results in our 

tests. 

 

3. Case Studies 

3.1 HPC Applications performance 

In this case study, we performed an evaluation of DRAM caches for real-world 

applications, i.e., NPB [3] and GAPBS [4] in full system simulation for a system modeling 

Intel’s Cascade Lake memory system. Due to limited space, here we only describe the NPB 

results. We ran all workloads in three different configurations. The first two configurations 

(NVRAM, DRAM) model a system without a DRAM cache and the main memory as 

NVRAM or DRAM. The third configuration (DCache_64MB) uses a 64MB DRAM cache 

and NVRAM as main memory. Figure 3 (top) shows a million instructions per second 

(MIPS) values for NPB in three configurations. In most cases, DCache_64MB performs 

the worst, with the most prominent performance degradation for lu.C and bt.C. The only 

exception is is.C, where DCache_64MB performs better than NVRAM. The performance 

of DCache_64MB correlates with the DRAM cache misses per thousand instructions 

(MPKI) values shown in Figure 3 (bottom). For example, is.C shows the smallest and lu.C 

shows the largest MPKI values. 

 

  

 3.2 Effect of Link Latency 

In this case study we analyzed the performance of a DRAM  cache while backed up by either 

DDR4, or NVRAM, configured in the disaggregated mode of our model. We applied different 

latencies to the link connecting the DRAM cache (local memory) to its backing store (remote 

memory). Injecting a synthetic read pattern with hit ratio of 0% (all miss-clean), we observed 

that sensitivity of NVRAM case to the link latency is lower than DDR4 case. Moreover, for 

the higher latencies the performance of the both cases become close. We believe the high 

response time that the DRAM cache shows on average, contributes to the tolerance of link 

latency. Table 1 summarizes our results for this study. 

 

4. Conclusion 
In this work we described our contribution to the heterogenous memory systems modeling. 

The model we described here, will be included in coming releases of gem5 for the community 

access. As the disaggregation and heterogeneity will play an important role in future memory 

systems, we believe having this model will enable performing researches that was not 

possible before. 

We plan to include more results and studies for the presentation in the workshop. 
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DDR4 

No 

Link 
6.31 1.484 

0.2 5.86 1.599 

1 5.61 1.833 

2.5 5.20 2.985 

5 3.04 5.346 

NVM 

No 

Link 
6.03 2.489 

0.2 6.03 2.487 

1 6.03 2.491 

2.5 4.86 3.269 

5 2.99 5.460 

Fig. 2: Comparison of observed bandwidth by 

LLC in DMC vs. UDCC (top), and comparison 

of access amplification of our model vs Intel’s 

Cascade Lake (bottom). 

Fig. 3: Performance of NPB in full system 

simulation using our DRAM cache model. 

 

Table 1: Performance of DRAM cache controller 

while link latency changes. 
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