
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

NOVA: A Novel Vertex Management Architecture
for Scalable Graph Processing

Marjan Fariborz†
x∗, Mahyar Samani‡∗, Austin York§

x
, S.J. Ben Yoo‡, Jason Lowe-Power‡, Venkatesh Akella‡

Ayar Labs†, University of California Davis‡, Google§

marjan@ayarlabs.com†,{msamani, sbyoo, jlowepower, akella}@ucdavis.edu‡, austinyork@google.com§

Abstract—We propose a scalable graph processing hardware
accelerator called NOVA that is based on a novel vertex man-
agement architecture that decouples the execution of reduction
and propagation operations in the popular vertex-centric graph
processing paradigm. This allows us to store the working set
in off-chip memory and utilize the available on-chip memory
as a buffer to hide the latency of DRAM accesses instead of a
traditional cache. This overcomes one of the key drawbacks of
almost all the prior works which require temporal partitioning
of graphs to scale to large graphs. We develop a cycle-accurate
model of the architecture in gem5 and demonstrate that NOVA
exhibits near-perfect weak and strong scaling while scaling to
large graphs by spatially tiling multiple nodes. In addition, our
simulations show that NOVA is 2.35× better than a state-of-the-
art graph accelerator (PolyGraph) while using a fraction of the
on-chip memory on a synthetic graph with 134M vertices and
over 2.14B edges.

I. INTRODUCTION

Modern data-driven scientific discovery is based on under-
standing relationships between data entities that are modeled
as graphs—i.e., graph processing. Traditionally, graphs are
processed on CPUs and GPUs using optimized libraries such
as Galois [37], Ligra [41], GAPBS [10], Gunrock [46], etc.,
but the performance of software implementations on large
graphs is unacceptably poor in many applications. As a result,
there has been strong interest in new hardware accelerators
for graph processing, with various proposals in the past few
years [4], [13], [18], [32], [38], [43].

Most graph accelerators proposed in the literature leverage
a vertex-centric programming model, where the task of vertex
processing exhibits low spatial and temporal locality, leading
to frequent random memory accesses. For such accelerators,
the task of managing and storing active vertices is an important
challenge since active vertices (vertices that have been visited
and whose neighbors should be visited next) dictate the next
work that needs to be done.

To address this challenge, prior research has explored lever-
aging locality and minimizing data movement overhead by
storing vertices (or information such as messages to each
vertex) in on-chip memory [4], [13], [18], [34], [38], [43].
Using on-chip memory allows for low-latency access and
management of active vertices.

While storing vertices in on-chip memory is suitable for
small graphs with a vertex set that fits within available on-

∗ M. Fariborz and M. Samani contributed equally to this work.
x

Work done while at University of California Davis.

RMAT21 RMAT22 RMAT23 RMAT24 RMAT25
Increase Graph Size →

0

10

20

30

40

50

GT
EP

S

Number of Nodes 1 2 4 Platform NOVA PolyGraph

Fig. 1: Both systems have 1.5 MiB on-chip memory and
332.8 GB/s for BFS workload (per node). GTEPS (giga
traversed edge per second) represents the system throughput.

chip memory, scalability becomes problematic as graph size
increases. Large graphs necessitate partitioning into slices
and time-multiplexing to utilize on-chip memory, a tech-
nique known as “temporal partitioning. Temporal partitioning
reduces irregular off-chip memory accesses. However, for
large graphs relying on temporal partitioning imposes over-
heads primarily caused by switching overheads between parti-
tions. In addition, the generated partitions often exhibit inter-
dependencies, requiring multiple time multiplexing iterations.

Figure 1 shows that in accelerators that utilize temporal
partitioning, the processing throughput decreases as the graph
size increases. In this example, we use PolyGraph [13], the
state-of-the-art graph accelerator with a low-cost temporal
partitioning method. Figure 1 shows that PolyGraph achieves
higher throughput for smaller graphs. However, the overheads
of switching slices prevent PolyGraph from maintaining the
same throughput for larger graphs. Thus, relying on temporal
partitioning is not a scalable solution.

We propose a scalable architecture for message-driven graph
processing called NOVA. NOVA is based on a novel vertex
management architecture, which stores vertices in DRAM
and uses a small SRAM buffer intelligently to hide the
latency of vertex processing. The intuition behind our design
is as follows: the two steps in vertex processing, namely,
reduction and propagation, have different tolerances to latency.
Reduction is more critical than propagation since it is very
likely that a given vertex has multiple outgoing edges. In
our approach, we prioritize reduction over propagation, which
means that if there is insufficient space in on-chip memory,
we spill active vertices to slower DRAM to create space for
vertices that need to be reduced. This results in a decoupled

execution machine (a well-studied paradigm in computing
architecture [42]), allowing the reduction and propagation
to proceed as fast as the memory bandwidth allows. Our
experiments show that there is enough vertex-level parallelism
in the asynchronous event-driven implementation paradigm to
hide the latency of DRAM accesses. So, in effect, the on-
chip SRAM serves more like the decoupling buffer between
the reduction and propagation engines. This is in contrast to
almost all prior work, where the on-chip SRAM is used as
a traditional cache [13], [34], [38], [51]. However, the key
challenge with the proposed approach is how to find active
vertices if they are spread across both SRAM and DRAM. We
develop an efficient vertex tracking mechanism to accomplish
this, as described in detail in the paper.

The benefits of the proposed architecture (NOVA) and hence
the main contributions of this paper are threefold: (1) We
get a potentially much larger window for coalescing updates.
Basically, one could view the act of going to the DRAM to
get an active vertex as a form of delaying the propagation
function, which means the vertex in DRAM can accumulate
more updates before a new message is sent out. In turn, with
the proposed decoupled execution approach, fewer messages
are sent out, which improves work efficiency and overcomes
one of the main drawbacks of asynchronous graph processing
(compared to synchronous approaches) [13]. Prior work in the
area of event-driven asynchronous graph processing resorts
to an eager approach to message generation, i.e., a message
is potentially generated as soon as an update arrives, which
results in more messages being sent and, hence, lower work
efficiency. Note that some approaches such as PolyGraph [13]
mitigate this to some extent by complex task scheduling
schemes to choose a particular vertex to process to improve
work efficiency. (2) The proposed accelerator is not limited
by the available on-chip SRAM to process a graph if we have
sufficient SRAM to hide the latency of the slower DRAM;
the proposed architecture is suitable for platforms with a
limited amount of SRAM, like FPGA. (3) By removing SRAM
size as a constraint, we do not have to resort to temporal
partitioning for scaling. We can use spatial partitioning to scale
arbitrarily. We are just limited by the available DRAM capacity
at each node to store the vertices/edges. The performance of
the proposed system is only limited by the available memory
bandwidth, allowing us to achieve a balanced system, which
is necessary for scalability.

The rest of the paper is organized as follows: we start with
the definitions and background, followed by the details of
the microarchitecture of the accelerator node. Next, we show
how multiple accelerator nodes can be composed to handle
arbitrarily large graphs. We discuss the evaluation framework
and present results, including comparison with related work,
sensitivity analysis on various design factors, and the details
of the hardware prototyping of a single accelerator node on
FPGA, and conclude with related work.

II. BACKGROUND AND PREVIOUS WORK

A. Overview of Graph Analytics
Definitions: Vertex-centric programming is a common

paradigm for implementing graph algorithms [3], [4], [10],
[13], [18], [37]–[39], [41], [44]. In this computation paradigm,
programmers describe graph algorithms as a series of op-
erations from the perspective of a vertex [29]. Some graph
processing workloads can be implemented using the message-
driven paradigm, which can be thought of as each vertex
sending messages to its neighbors. Each message, such as
< u, δ >, has two main attributes: a destination vertex (u) and
an update (δ). In this message-driven model, an active vertex
(such as u) calculates an update for each of its neighbors and
sends the update through the message. Graph workloads can
be described using reduce and propagate functions. Reduce
determines the new property of a vertex given a message for
the vertex and its current property. Propagate uses the property
of a vertex along with the weight of its edges to create new
messages for the neighboring vertex.

Metrics: Beamer et al. [9] discusses the importance of
traversed edges per second (TEPS) as the performance metric
in graph analytics. Execution models such as asynchronous
graph processing might result in higher TEPS, but some edges
are traversed redundantly. Work efficiency is the number of
edges traversed by the sequential code over the number of
edges traversed by asynchronous execution. Therefore, for
asynchronous processing, the product of work efficiency and
TEPS determines the performance. Asynchronous approaches
coalesce multiple reductions to a specific vertex to increase
work efficiency before propagating from the vertex.

B. Prior Work on Graph Accelerators
In the past decade, there has been a plethora of work on

graph accelerators [3], [7], [18], [28], [31]–[33], [35], [38],
[39]. Among these studies, some use a traditional memory
hierarchy with multi-levels of private and shared caches [7],
[31], [32]. However, these architectures suffer from data move-
ment overheads due to poor data reuse in graph workloads.
As a result, cache thrashing leads to more than 50% of all
memory accesses missing in the last level cache [28]. Another
group of graph accelerators rely on on-chip memory to hide the
long accesses to memory and increase locality [18], [38], [39],
[51]. These systems rely on the capacity of on-chip memory
to exploit locality and remove inefficient access to the off-
chip memory. These accelerators use temporal partitioning to
scale to graphs larger than their on-chip memory capacity
and spatial partitioning for graphs larger than their off-chip
memory capacity. In temporal partitioning, on-chip memory
can be shared by different partitions sequentially over time,
while in spatial partitioning, multiple accelerator chips can
house all slices while an interconnection network streams
inter-slice events in real-time.

Accelerators such as GraphPulse [38] and JetStream [39]
follow an asynchronous message-driven execution model.
These studies separate communication messages from ver-
tex/edge processing and utilize a global on-chip memory to

store and coalesce messages targeting specific vertices. For
graphs that exceed the on-chip memory capacity, Graph-
Pulse partitions and time-shares the memory among slices.
In contrast to GraphPulse and JetStream, NOVA allows vertex
updates to spill over to a large-capacity memory. Additionally,
like GraphPulse, NOVA assigns the processing of each specific
vertex to a processing element (although NOVA uses static
assignment while GraphPulse uses dynamic scheduling). Fur-
thermore, NOVA supports both asynchronous message-driven
execution and synchronous models.

PolyGraph [13] is a flexible accelerator that supports
multiple run-time variants, including non-sliced, sliced, syn-
chronous, and asynchronous modes. The non-sliced variant is
only effective for small graphs or phases of the execution
with a small number of active vertices that fit on the on-
chip memory. PolyGraph takes advantage of intelligent work
reordering to increase work efficiency. NOVA can support
the same flexibility and workload variants of PolyGraph. In
addition, the non-slice variant in NOVA is efficiently imple-
mented even for graph sizes surpassing the accelerator’s on-
chip memory, resulting in better scalability than PolyGraph.

Dalorex [34] introduces the concept of data-local execu-
tion, similar to message-driven processing. It eliminates off-
chip memory entirely, leveraging wafer-scale integration. Its
performance is dictated by the on-chip memory bandwidth,
resulting in significantly higher performance than prior work.
Dalorex spatially slices the graph to scale to larger graphs and
increases the number of accelerator cores. Processing a graph
such as Twitter requires gigabytes of on-chip storage, which is
very expensive. While Dalorex stores all the graph information
on-chip, NOVA strives to utilize off-chip memory efficiently
and significantly reduces the size of on-chip memory.

In addition to microarchitectural changes that allow NOVA
to scale to large graphs beyond other studies, we also focus
on system-level architecture to enable scaling out without
overprovisioning system capacity and bandwidth.

C. Overheads of Temporal Partitioning

Previous accelerator designs enhance spatial and temporal
locality by partitioning the graph into slices that fit into
on-chip memory, which then time-share the limited on-chip
resources. Temporal partitioning ensures that all the vertices
that need processing reside in the on-chip memory during the
processing of a slice. This design removes random accesses to
the off-chip memory and reduces the access time to vertices.
However, temporal partitioning comes with additional costs
in preprocessing, portability, overhead of switching between
slices, and underutilization of hardware resources.

1) Preprocessing Cost and Portability: Ideally, the graph
should be partitioned into independent slices, each of which
is highly connected. However, optimal algorithms for such
preprocessing can exceed the computation complexity of graph
processing algorithms. For example, polynomial-time solu-
tions for min-cut have not been found yet, while BFS has
a complexity of O(‖V ‖ + ‖E‖) [6], [8], [21] where V and
E are the set of vertices and edges of graph respectively. In

1272 (32k)

636 (64k)

318 (128k)

159 (256k)

80 (512k)
40 (1m)

20 (2m)
10 (4m)

5 (8m)
3 (16m)

2 (32m)
1 (64m)

#Partitions (Partition Size)

0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
Ti

m
e

(s
) Processing Time (s)

Inffeciency Overhead (s)
Switching Time (s)

Fig. 2: BFS on Twitter: Temporal partitioning overhead as the
number of slices increases. Slice size is shown in vertices.

recent studies, Balaji et al. show that RABBIT++ requires
1047 iterations of SpMV kernels to amortize preprocessing
costs [8]. In addition, even with an optimal strategy (e.g., min-
cut), it is impossible to eliminate inter-slice edges unless the
graph contains disjoint communities.

Low-cost methods, like Gemini [59], partition the graph
into chunks based on the id of vertices. Gemini works well
for graphs as large as the Twitter graph. However, for larger
graphs, cross-slice edges outnumber edges inside the slice.

Temporal partitioning lacks portability due to its reliance on
available on-chip memory. For instance, a graph partitioned for
an 8 MiB on-chip memory accelerator would need repartition-
ing for a different memory configuration.

2) Switching Cost and Resource Utilization: In addition to
the preprocessing cost, there is also the cost of increased pro-
cessing time due to switching and underutilization of hardware
resources. There are three processing steps when switching
between temporal slices: (1) the current slice’s vertices must
be written back to the off-chip memory, and the new slice’s
vertices must be read from off-chip memory. (2) Each slice has
a set of replicated vertices to facilitate temporal partitioning. If
a vertex updated by the current temporal slice resides in other
slices, it must be read and updated in off-chip memory. (3)
All replicated vertices of the new slice must be read to create
inter-slice messages. Each slice must be processed multiple
times due to inter-slice edges, adding to the work inefficiency.

To quantify the overhead of slice switching, we imple-
mented the partitioning technique used in PolyGraph [13],
[59]. We used the Twitter graph and BFS workload and broke
the execution time into three components. (1) Processing time
accounts for time spent processing slices. (2) Switching time
accounts for time spent switching slices, including writing the
current slice, reading the new slice, and reading/writing inter-
slice replicated vertices. (3) Inefficiency overhead accounts for
the time spent processing slices more than once.

Figure 2 shows the execution time breakdown between
processing time, inefficiency overhead, and switching time
as the number of slices grows (larger graphs). Inefficiency
overhead and switching time constitute approximately 20% of
the execution time when there are less than three slices. As
the number of slices grows, the inefficiency overhead increases
quickly. Figure 2 shows that when the graph is divided into
318 slices, inefficiency overhead makes up more than 75% of

the execution time. Therefore, relying on temporal partitioning
to process large graphs is not a feasible solution for scalability.

New graph partitioning methods are introduced to reduce the
overheads of temporal partitioning, such as preprocessing and
switching cost [17], [49]. However, these studies target graph
applications such as Graph Convolutional Networks (GCNs)
that have specific characteristics, such as synchronous execu-
tion and being topology-driven (all vertices are active during
their execution) [37]. Recent I-GCN [17] introduced an online
graph restructuring algorithm that locates highly connected
subgraphs using graph traversal algorithms, such as BFS, to
partition graphs during the execution of GCN. NOVA targets
more general workloads and can process asynchronously and
synchronously for data and topology-driven [37] applications.

III. MICROARCHITECTURE OF NOVA

Relying solely on locality to enhance performance in an
accelerator core leads to an architecture where throughput
is influenced by graph size. As the graph size grows, the
accelerator cores performance diminishes, resulting in a non-
scalable architecture. NOVA aims to achieve high processing
throughput regardless of graph size, addressing the scalability
challenges faced by previous approaches. We accomplish this
by efficiently utilizing the available memory bandwidth to
access graph edges. However, maintaining high processing
throughput remains challenging due to the random nature of
vertex information accesses within the graph.

During the execution of a graph workload, vertex infor-
mation is accessed for reduction and propagation. Both of
these operations require fast memory access to maintain high
throughput. However, for each active vertex, multiple propaga-
tion operations are necessaryone for each edge. Additionally,
reading edges exhibits higher spatial locality. Consequently,
the propagation process can handle delays in accessing vertex
information better than the reduction process.

Our microarchitectural insight centers around achieving
high throughput by simultaneously processing multiple reduc-
tions in parallel to mitigate the impact of long memory access
latency. We achieve this by storing an optimal number of
active vertices in the fast, small on-chip memory. In addition,
efficiently utilizing memory bandwidth for edge accesses is
crucial for improving processing throughput.

We create a decoupled pipeline that allows independent
execution of reduction and propagation. As active vertices are
generated by the reduction operation and consumed by the
propagation operation, we orchestrate their movement between
reduction and propagation to achieve effective decoupling. Our
design allows active vertices to spill into off-chip memory to
create space for additional reduction operations. Consequently,
active vertices not yet processed by propagation may be
removed from on-chip memory.

To complement this, we introduce a run-time process that
tracks and retrieves active vertices as needed during propa-
gation. Our approach has the following benefits: 1 Spilling
active vertices to off-chip memory allows the active vertex
set to span on-chip and off-chip memory, which naturally

Graph Processing Node

PE
PE

PE
PE

PE
PE

PE
PE

H
B

M
2.

0
St

ac
k

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

In
te

r-
G

PN
 N

et
w

or
k

I/O

Message Processing Unit

Message Generation Unit

Input Buffer

Output Buffer

addr

∂

read

Cache

....

....
write

data

read

active

Vertex Memory

end

start

prop

...

...

...

Tracker
Module

insert

Edge Memory

Functional
Units

addr

∂

...

...

data

Functional
Units

w
rit

e

re
ad

From

Network

Vertex Management Unit
To

Network

Active Buffer

read/write
 1

 2

 3
 4

 5

6

 7

 8 9

Fig. 3: Organization of a GPN with details of one PE, and its
data path. PEs are connected through point-to-point network.

expands the coalescing space and improves work efficiency.
2 Our design ensures that reduction operations can occur

even when many active vertices are awaiting processing by the
propagation operation. As a result, we meet the requirements
for deadlock freedom, as outlined by Eicken et al. [14].

The following sections discuss our designs for implementing
hardware support for each of reduction, propagation, spill, and
retrieval mechanisms.

A. Overall Design of NOVA

NOVA comprises multiple graph processing nodes (GPNs).
Each GPN consists of multiple processing elements (PE),
which are message-driven processors capable of executing
algorithms expressed in Algorithm 1. Algorithm 1 shows
the decoupled message-driven implementation of the SSSP
workload. Decoupling the reduction from propagation enables
NOVA to support both asynchronous [55] and bulk syn-
chronous parallel (BSP) [45] execution models. During BSP
execution, the blue block (message processing) and the red
block (message generation) are executed in series. This serial
execution is enforced by the decoupled next active (shown in
yellow). In asynchronous execution, all blocks are executed
simultaneously until there are no more messages [55].

A PE consists of three main units corresponding to the three
parts of Algorithm 1. The colors of the units in Figure 3 cor-
respond to the colors in Algorithm 1. (1) Message processing
unit processes messages and updates vertices. It determines
the new property of a vertex using the reduce function. (2)
Vertex management unit keeps track of active vertices from
the message processing unit and sends active vertices to the
message generation unit. (3) Message generation unit uses
active vertices and their edges to generate new messages. It
produces the update in a message using the propagate function.

In a PE, the vertex management unit interfaces with message
processing and message generation unit to create the illusion
that the active buffer (in Figure 3) has capacity equivalent to
the size of the off-chip memory. The message processing unit
pushes vertices into active buffer as they become active and
the message generation unit pulls active vertices from active
buffer when propagating messages.

Algorithm 1: Decoupled message-driven implementation
for single source shortest path.

dist[:‖V ‖] = ∞;
messages.append({source,0});
while not messages.empty() do

for u, δ in messages do
old dist = dist[u];
dist[u] = min(old dist, δ); // reduction
if old dist != dist[u] then

track active(u); // Path 5 on Figure 3

// Tracker Module implements next_active()

for v in next active() do
s, e = row ptr[v], row ptr[v+1]-1;
v info.append({dist[v],s,e}); // active buffer

while not v info.empty() do
// Path 6 on Figure 3

for α, start, end in v info do
for i in range(start, end) do

dest = edge dests[i];
ε = add(α, edge wgt[i]); // propagation
messages.append({dest,ε});

B. Message Processing Unit

The message processing unit processes vertices based on
incoming network messages. To process a message (< u, δ >),
the destination vertex (u) has to be read (path 1 in Figure 3).
After the vertex is read, its property (e.g., distance in case of
SSSP) and the message’s update (δ) are used by the reduce
function (e.g., minimum in case of SSSP) to determine the new
property of the vertex (paths 2 and 3 in Figure 3). After the
reduction, the memory block in the cache is updated with the
new copy of the vertex (path 4 in Figure 3). If the reduction
operation creates an active vertex, the vertex management unit
is informed so that it can track the vertex as an active vertex
(path 5 in Figure 3).

Due to a lack of locality in accesses, reading vertices from
DRAM can result in long access latency. The message pro-
cessing unit utilizes a direct-mapped cache with a write-back
policy to enable parallel and fine-grained access to memory.
Nevertheless, due to the massive size of most graphs, the cache
is unlikely to capture much locality. In our implementation,
we have configured this cache with a size of 64 KiB for
each PE. In Section VI-C1, we demonstrate that performance
remains consistent across various cache sizes. Consequently,
we selected the smallest cache size.

C. Message Generation Unit

The message generation unit generates messages from active
vertices to their neighbors. The messages are generated using
the edges of active vertices from the vertex management unit
(paths 6 and 7 in Figure 3). The unit initiates its process by
reading an entry from the active buffer. Each entry in the active

TABLE I: Trade-offs of different active vertices spilling meth-
ods.Vertex set overwriting requires no extra coalescing cost.

Spilling Method Off-chip buffer Overwriting in vertex set
Number of Writes Per Spill 2: 1 to vertex set and 1 to FIFO 1: 1 to vertex set
Retrieval Cost Read from FIFO Search for active vertices
Coalescing Cost Search FIFO for the same vertex Overwrite in vertex set
Metadata Need to store vertex address explicitly None
Extra off-chip Memory usage O(VE) 0

buffer has three members < α, start, end >. α denotes the
property of the active vertex, and [start, end] identifies the
location of its edges in the edge memory.

For each edge, < v,w >, in [start, end], a message is
generated. The destination of the message is determined by
the destination vertex of the edge (v); the message update
is calculated using the propagate function on the property of
the vertex (α) (path 8 in Figure 3) and the weight of the
edge (w). Subsequently, the message is sent to the network,
where it is received by its designated message processing unit.
The addressing function is assigned at initialization time since
vertices are statically assigned to PEs.

D. Vertex Management Unit

The key component of our proposed pipeline is the vertex
management unit. This unit breaks the dependency of the
message generation unit on the message processing unit by
mediating active vertices between them. The vertex manage-
ment unit tracks active vertices produced by the message
processing unit—on-chip or off-chip, and delivers them to the
message generation unit on demand.

A straightforward technique to manage spilled vertices
involves storing copies of the active vertices in an auxiliary
buffer located in the off-chip memory. To retrieve spilled active
vertices, they will be read from this buffer. However, utilizing
an additional off-chip buffer presents few disadvantages: a)
spilling an active vertex requires two write operations—one
to the vertex set and one to the buffer. b) Without coalescing
different copies of the same vertex in the off-chip buffer,
the buffer size could increase significantly. c) To enable
coalescing, it is necessary to maintain the address or ID of
each vertex in the buffer, which requires additional capacity,
and to search the buffer for the same vertex, which requires
additional bandwidth.

In NOVA, we allow every spilled active vertex to overwrite
its previous value in the off-chip memory. In turn, NOVA does
not require extra capacity or bandwidth to spill the active
vertices into off-chip memory. However, with our approach,
retrieving active vertices from the off-chip memory requires
searching the vertex set for active vertices—requiring addi-
tional bandwidth from the off-chip memory and incurring long
access latency. To reduce the required bandwidth and access
latency for retrieving spilled active vertices, we store on-chip
information (meta-data) about the location of such vertices in
the off-chip memory (line 13 in Listing 1).

Table I summarizes the trade-offs between using an off-chip
buffer and overwriting vertices in the vertex set.

In the following, we discuss the details of how the vertex
management unit tracks the location of active vertices in the

Listing 1: Vertex management unit procedures to track spilled
active vertices and provision active vertices to message gen-
eration unit. on evict is called when a cache block is evicted.

1
2 struct Vertex{cur_prop, next_prop, active_now, active_next}
3
4 superblock_size = superblock_dim * block_size
5 def active(block):
6 is_active = False
7 for vertex in block:
8 is_active |= vertex.active_now
9 return is_active

10
11 def get_superblock_number(block):
12 return floor(block/superblock_dim)
13
14 def track_as_active(block)
15 # each superblock has a counter in tracker module
16 counter[get_superblock_number(block)] += 1
17
18 def untrack(block):
19 counter[get_superblock_number(block)] -= 1
20
21 def on_evict(block):
22 if active(block):
23 track_as_active(block)
24 write(block)
25
26 def next_superblock():
27 for index in len(counters):
28 if counters[i] > 0:
29 return i * superblock_size
30
31 def prefetch():
32 start = next_superblock()
33 end = start + superblock_size - block_size
34 step = block_size
35 # below range is inclusive of end
36 for block_addr in [start, end, step]:
37 block = read(block_addr)
38 if active(block):
39 active_buffer.insert(block)
40 untrack(block)
41
42 def next_active():
43 block = active_buffer.front()
44 ret = null
45 for vertex in block:
46 if vertex.active_now:
47 ret = vertex
48 if active_buffer.critically_low:
49 prefetch()
50 return ret

off-chip memory. In addition, we discuss the trade-off between
the capacity requirements of storing tracking information and
the precision of locating active vertices in the off-chip memory.

The vertex management unit has two main components.
(1) Tracker module that includes on-chip memory and control
logic used to store metadata to track active vertices in the
vertex memory and to recover active vertices from the vertex
memory (line 13 in Listing 1). (2) A FIFO buffer to store
prefetched active vertices for the message generation unit
(active buffer in Figure 3).

In our design, we use three techniques to reduce the required
on-chip storage and memory bandwidth and hide the long
latency of retrieving vertices: (1) we track memory blocks
(memory atoms) with active vertices, not the vertices them-
selves, (2) we group memory blocks into superblocks to reduce
the tracking metadata, and (3) we prefetch active vertices
before the message generation unit requests them. Techniques
(1) and (2) reduce the capacity to store tracking information
and the required bandwidth to search off-chip memory and
technique (3) hides the long memory access latency.

To illustrate the required on-chip capacity for the tracker
module for a real use case, we use the WDC12 [2] graph,
which has approximately 3.6 billion vertices and 129 billion
edges. We store the vertices in HBM2 memory, which has an

atom size of 32 bytes. We assume 16 bytes as the size of the
vertex data structure (vertex set size in WDC12 is 57.6 GiB).

Naively, we can keep a single bit for every vertex in the
graph, denoting whether the vertex is active (a bit vector).
This solution will require approximately 440 MiB of on-chip
storage for this example. Furthermore, the size of the bit vector
limits the number of vertices that can be tracked.

To reduce the capacity requirements of the tracker module,
we can track active vertices at the granularity of memory
blocks. We will refer to a memory block that stores at least
one active vertex as an active block. With this approach,
we can reduce the tracker module’s required capacity to
approximately 220 MiB in our example.

While storing a bit vector can accurately locate active
vertices in the off-chip memory, they require large storage
for operation. In NOVA, we track active vertices based on
a superblock of N memory blocks and count the number of
active blocks in the superblock (function track as active in
Listing 1). Therefore, grouping more blocks into a superblock
significantly reduces the capacity of the tracker module. The
total capacity required by such an implementation is calculated
using Equation 1 and Equation 2, where superblock dim de-
notes the number of memory blocks grouped into a superblock,
and block size denotes the block size for the vertex memory.
We use superblock dim = 128 and block size = 32B
(HBM2 supports 32 B accesses). Our design requires only
16 MiB of on-chip memory to track all active vertices in
WDC12, which is 27× smaller than tracking via a bit vector.

Using superblocks to track active vertices introduces a
trade-off between the amount of on-chip memory (for the
tracker module) and the number of associative searches for
each retrieval. Instead of eliminating associative searches, our
approach reduces the number of required associative searches
while using small on-chip resources. The maximum size of the
tracker module only depends on the size of the vertex memory
assigned to each PE, superblock dim, and block size, and
it is independent of the size of the stored graph.

capbits = (log2 superblock dim + 1)× num superblocks (1)

num superblocks =
vertex memory capacity

superblock dim× block size
(2)

To hide the latency of searching for active blocks in the
vertex memory, the vertex management unit prefetches (func-
tion prefetch in Listing 1) active blocks into the active buffer
(path 9 in Figure 3). The prefetch logic is configured to read
16 blocks of memory from a superblock whenever 16 or more
entries are available in the active buffer (line 45 in Listing 1).
Only the active blocks are placed in the buffer, and the
remaining blocks are dropped. Our simulation results showed
that making the active buffer bigger than 80 entries (each
entry holding one memory block) has diminishing returns.
Therefore, in our simulation, we assign 80 entries to active
buffer.

Listing 1 demonstrates the runtime procedures performed by
the vertex management unit that allows it to mediate vertices

between the message processing unit (on evict) and the mes-
sage generation unit (next active also found in Algorithm 1).

Since the process of retrieving active vertices is done by
doing associative searches within superblocks, we expect to
see wasted bandwidth in the accesses to the vertex memory
(for reading non-active blocks while searching for active
blocks). We investigated the effect of vertex recovery on vertex
memory bandwidth utilization and the performance sensitivity
to the tracker module’s size in Section VI-C2.

IV. SYSTEM-LEVEL ARCHITECTURE OF NOVA

We propose a scale-out approach to handle graphs with
tera/peta-scale capacity that exceeds the memory assigned to
a single processing element (PE). We distribute the graph by
assigning each vertex to a single PE. As a result, only one
PE can update a specific vertex address, removing any need
for atomic accesses. Messages between PEs are transmitted
through the network to the PE that owns the vertex. In this
setup, there will never be a situation where two PEs need to
update the value of a single vertex. We allocate vertex and edge
memory to each PE to facilitate this interaction. Consequently,
we separate the PE-to-memory interaction from the PE-to-PE
interaction, reducing traffic on the inter-PE interconnect fabric.

A. Choice of off-chip Memory

While NOVA can utilize any off-chip memory to store
vertices and edges, ensuring a scalable architecture requires
optimizing bandwidth and capacity utilization while avoiding
resource overprovisioning. Therefore, we must carefully select
memory systems that align with the unique access patterns and
capacity/bandwidth trade-offs inherent in graph processing.
This approach enables the development of a balanced system.

In graph workloads, vertices and edges have different re-
quirements for capacity and bandwidth. In general, edges
require a larger memory capacity compared to vertices. In
most graph programming models [25], [37], access to edges
is sequential and read-only. In contrast to edges, vertices have
low spatial and temporal locality in most graph algorithms.
Due to these differences, we have chosen a heterogeneous
system for the off-chip memory in PE.

We have chosen HBM2 as the off-chip memory to store
vertex information. HBM2 is an appropriate choice for storing
vertices because it offers substantially more bandwidth under
random access patterns [47]. Moreover, HBM allows for finer
grain accesses (32 bytes), resulting in less bandwidth waste.
We have chosen DDR4 for storing the edges because of its
high capacity density compared to HBM2 and high bandwidth
under sequential access.

Inside a GPN, we assigned eight PEs to one stack of HBM2
memory (eight channels). Each PE is dedicated to one channel
of the HBM2 stack and operates only on the vertices stored in
that channel. Previous studies show that vertex memory needs
to offer 4× the bandwidth of the edge memory [16]. So we
allocate four DDR4 channels for the edge memory for each
GPN. Though we use HBM2 as the vertex memory and DDR4
as the edge memory, our design is not limited to these specific

memory technologies. Any memory technology that provides
the required bandwidth and capacity for vertices and edges
can be used as long as the required balance is achieved.

B. Spatial Vertex Mapping

Our proposed architecture assigns each vertex and its edges
to a single PE. Choosing the vertex assignment is a tradeoff
between preprocessing cost, load balancing, and locality. In
a load balanced system, a similar number of edges are
assigned to each PE for processing. Optimizing load balance
requires sorting the vertices by their out-degree and uniformly
distributing the vertices with the highest outdegrees across
PEs. Interleaving vertices between PEs with a fine granularity
ensures load balance. In the locality-based approach, we used
community detection techniques such as RABBIT [6] to detect
highly connected vertices and assign sequential ids to vertices
in each community which improves locality. However, divid-
ing a graph into communities is computationally expensive
and should be avoided. By taking advantage of locality, we can
reduce network traffic at the cost of a load balance. Finally, we
can also use the original ordering made by the graph publisher
and eliminate any pre-processing. In this case, we interleave
the vertices based on their vertex ids between PEs, assigning
a similar number of vertices to each PE. In Section VI-C3,
we show the sensitivity of our design to different spatial
partitioning methods.

C. Interconnection Network

A scalable accelerator needs to process any graph of any
size with minimum impact on performance. To handle large
graphs that exceed the memory capacity of a single GPN, we
need to increase the number of GPNs. In multi-GPN systems,
it is essential to prevent message communication between
accelerators from becoming a performance bottleneck, thereby
maintaining high performance and high memory utilization
per GPN. A well-partitioned graph with a low rate of inter-
slice messages does not require a high-bandwidth network.
However, creating a well-partitioned graph with few inter-slice
messages involves a high pre-processing cost. Thus, we aim
to use an interconnect technology to handle the traffic when
the graph is randomly distributed among the accelerators.

For a scalable accelerator, we must make sure that the in-
terconnect has sufficient bandwidth to prevent data movement
between GPNs from becoming the bottleneck. In NOVA, each
GPN has dedicated edge and vertex memory, which means a
GPN does not need to access the (remote) memory in another
GPN. This approach separates memory traffic from inter-
node traffic and uses the interconnection fabric only to send
messages to neighboring vertices residing in remote GPNs.

We can calculate the maximum traffic on the interconnect
by the maximum messages generated by each GPN, which
in turn depends on the edge memory bandwidth. The traffic
generated from each GPN is equivalent to the bandwidth of
edge memory. In NOVA, we assume 4 DDR4 channels/GPN
as the GPN edge memory with the aggregated bandwidth of
76.8 GiB/s.

In addition to the bandwidth requirement, we aim for
low-latency message communication between GPNs. There-
fore, a high-radix, low-diameter fabric that connects multiple
GPNs and provides low-hop communication between GPNs
is desirable. Point-to-point network topologies or crossbar
topologies, where every GPN in the network is connected to
every other GPN through a grid of high radix switches, are
desirable designs. For example, if one were to implement this
system today, one could consider using Broadcoms Tomahawk
switch [11] that provides an overall bandwidth of 51.2 Tb/s
with 256 lanes. By assigning two lanes per GPN, we can
scale up to 128 GPNs using this switch, accomodating graphs
requiring up to 16 terabytes of memory. Note that the large
publicly available graph today is WDC12 [2], which requires 1
terabyte of memory, which means with an off-the-shelf switch
as the interconnection network with the proposed accelerator
nodes, we can scale to graphs that are 16 times larger than the
largest publicly available graph today.

The key takeaway is that separating GPN-to-GPN and GPN-
memory traffic reduces the amount of bandwidth needed on
the interconnection fabric, allowing us to scale-out to process
significantly large graphs using today’s switch technology.

V. METHODOLOGY

We implemented our model in gem5 v22.0 [26]. We used
gem5 to model and evaluate our design and baseline. gem5 is
a cycle-level simulator that measures execution time directly
without depending on indirect methods. gem5 has pre-existing
memory models that are validated [40]. Furthermore, gem5
provides a straightforward interface for modeling interactions
with memory. We integrated new models (called SimObjects
in gem5) into the gem5 code base to model our design. We
have developed models for all the components in a PE. In our
design, we used already available models in gem5 for HBM2
and DDR4 to model off-chip memory. We modeled an 8×8
point-to-point electrical interconnect between PEs in a single
GPN and a model of a crossbar switch as the interconnect
between GPNs. Table II shows our system specifications.

State-of-the-art accelerators such as PolyGraph and De-
lorax have already demonstrated superior performance and
efficiency compared to GraphPulse, Chronos, Graphicionado,
and Ozdal. Hence, we only compared PolyGraph, which shows
the best performance compared to other prior work. We also
implemented a model of PolyGraph [13] in gem5, including
the temporal slicing mechanism. We chose the most optimized
variant and slice switching of PolyGraph as our baseline. We
have modeled PolyGraph in its Ss, Ac, Tw variant. Before
switching to a new slice, we process a temporal slice until
no new messages are generated. We assumed the accelerator
could parallelize the process of switching slices and fully
utilize the memory bandwidth for our modeling. To compare
against software platforms, we used Ligra [41] on an 8-core
x86 machine with 32 MiB L3 cache and 400 GB/s memory
bandwidth.

We used random partitioning to assign vertices to different
PEs. We implemented five graph analytics workloads. We

TABLE II: System specifications.

Specifications per GPN NOVA
PE 8 @ 2GHz
Spad 512 KB (cache) + 1 MiB (VMU)

Vertex memory HBM2 stack - 4 GiB cap. - 256GB/s
Edge memory 4 DDR4 channels - 128 GiB cap. - 76.8GB/s

Functional Units 16 for reduction + 48 for propagation
PE-PE Network 8×8 Electrical Network, 1.2 GB/s bandwidth per link
Inter-GPN Net. 8×8 crossbar switch with 60 GB/s port bandwidth [11]

TABLE III: Graph Workloads used in evaluations.

Graph Footprint Vertices Edges
Slices with
32 MiB on-chip memory

RoadUSA [1] 805.7 MiB 23.9M 58.3M 3
Twitter [22] 14.4 GiB 41.65M 1.46B 5
Friendster [22] 15.4 GiB 65.6M 1.8B 8
Host [2] 16.6 GiB 101M 2B 13
Urand [15] 34.0 GiB 134.2M 4.2B 16

used BFS, CC, and SSSP in the asynchronous mode and PR
and BC in the bulk-synchronous mode. BC, in its proposed
asynchronous implementations, requires forward and back-
ward passes, which doubles the number of edges required
to be stored. Our implementation of PR-delta, as specified
by [38], proved to be very sensitive to the order of the traversal
of the graph. Finding the optimal order of traversal requires
an overall graph view at the time of scheduling updates.
Therefore, ordering is not a feasible solution for problem sizes
significantly bigger than the size of on-chip resources. Hence,
we have chosen to implement PR in BSP mode.

Our objective is to evaluate how NOVA performs for large
graphs. Table III demonstrates the details of each of our
input graphs. We have used a combination of synthetic graphs
(Urand and RMAT [23]) along with real-world graphs such as
Twitter. Previous accelerators used Twitter and RMAT 226 as
their largest graph input [13], [34]. We evaluate NOVA using
Urand, which has 2× more vertices and 1.5× edges compared
to Twitter, as the input to our workloads.

VI. EVALUATION

To evaluate the performance of NOVA, we conducted a thor-
ough evaluation across multiple dimensions. Our evaluation
includes: (1) we compare our performance with PolyGraph
and identify the overheads of each design, (2) we evaluate the
scalability of our design for both strong and weak scaling, (3)
we analyze the sensitivity of our performance to various design
parameters, and (4) we provide an estimation of hardware
resources needed for PolyGraph, Dalorex, and NOVA to scale
to WDC12 size graphs. (5) We estimate the power and area
of a single GPN based on our implementation on FPGA.

Due to the significant simulation time, we could not simu-
late beyond 8 GPN systems (64 PEs), which is a system that
can process large graphs such as WDC12.

A. Comparison to State-of-the-art

Figure 4 compares NOVA with PolyGraph and Ligra with
the same amount of off-chip memory bandwidth. In this
comparison, both NOVA and PolyGraph are provisioned with

332.8 GB/s of off-chip memory bandwidth, which is equiva-
lent to the aggregate bandwidth of one NOVA GPN with one
HBM stack (256 GB/s) and four DDR4 channels (76.8 GB/s).
While NOVA uses 1.5 MiB of on-chip memory (512 KiB for
the cache and 1 MiB for the tracker module), PolyGraph uses
32 MiB of on-chip memory.

Figure 4 shows that when running BFS for the Twitter
graph PolyGraph is 30% faster than NOVA. In this case,
PolyGraph can process Twitter graph using only 5 temporal
slices. However, as discussed in Section II-C, the overhead of
switching temporal slices increases significantly as the number
of slices grows. For graphs such as Friendster, Host, and Urand
that are larger than Twitter, NOVA outperforms PolyGraph.
Overall, as the size of the graph increases, NOVA gets higher
speedup compared to PolyGraph, ranging from 1.15× faster
for Host (PR) to 2.35× faster for Urand (SSSP).

In all cases, NOVA utilizes 80% to 85% of the edge
memory bandwidth. However, PolyGraph does not leverage
the memory bandwidth efficiently, using only 25% to 35%
of the bandwidth for processing edges while the rest is spent
switching slices. As input graphs become larger, switching
slices constitutes a bigger part of the execution time, resulting
in NOVA exhibiting higher performance than PolyGraph.

In previous studies [13], [38], the on-chip memory is used
to decrease data access latency and consolidate the number of
updates, leading to improved work efficiency. NOVA takes
this step further by expanding the coalescing space from
the on-chip memory to the off-chip memory. As shown in
Figure 5, NOVA can coalesce up to 3× more messages than
PolyGraph, resulting in better overall work efficiency. This
shows that NOVA’s approach to expanding the coalescing
space and decoupling processes can significantly improve
work efficiency.

Figure 6 shows the breakdown of total execution time
between processing time and overhead time for NOVA and
PolyGraph. Processing time is the time that the accelerator
spends processesing vertices (reduction and propagation). For
PolyGraph, overhead time constitutes the amount of time spent
on switching slices; for NOVA this time constitutes the time
spent reading inactive vertices while fetching active vertices
in the memory (overfetching). Although in most cases the
processing time is shorter for PolyGraph, as the graphs grow
larger, the overhead time starts to outweigh the benefits of the
increased locality.

B. Scalability Analysis

Figure 7 shows how the performance changes as we increase
the number of GPNs for a fixed graph size (strong scaling)
for BFS and BC. However, other workloads see a similar
scaling trend. BFS is an example of a data-driven workload
that experiences dynamic changes in the number of active
vertices. In contrast, BC is a topology-driven workload in
which the graph determines the active nodes.

In general, NOVA shows a near-perfect performance scaling
as the number of GPNs grows. We observed a maximum 19%
difference between the ideal scaled performance and NOVA’s

performance (Twitter in Figure 7b). For the Urand graph,
performance grows beyond the ideal scaling due to increased
work efficiency. Overall, NOVA achieves excellent scalability
in performance as the number of GPNs increases.

Figure 8 demonstrates how NOVA’s performance improves
as we increase the number of nodes for a fixed problem size
per node (weak scaling). Weak scaling is typically employed
for memory-bound applications that require a memory capac-
ity beyond the capabilities of a single node. As illustrated in
Figure 8, increasing the resources and problem size will not
lead to performance degradation. In an ideal scenario of perfect
weak scaling, twice as many GPNs can process a graph twice
the size as the baseline in the same amount of time.

C. Sensitivity Analysis

1) Sensitivity to Cache Size: Each PE uses a cache to hide
the long off-chip random access latency. Due to the significant
size of the graphs, the cache cannot capture much locality
in accesses to the vertex memory. Figure 9a shows that the
cache size does not affect performance for cache sizes beyond
64KiB. For roadUSA with 4M of on-chip memory, most of the
graph fits within on-chip memory resulting in higher speedup.

Overall, we find less than a 2% performance improvement
when increasing the cache size from 64KiB to 4MiB per PE
(512KiB to 32MiB per GPN). The average bandwidth between
two graphs and different cache sizes is 6.4 GTEPS, which
is 80% of this system’s peak achievable bandwidth, showing
a high off-chip bandwidth utilization. Moreover, Figure 9a
demonstrates a small change in the execution time for both
graphs, showing that the throughput and work efficiency in
large graphs are independent of cache size for each GPN.

The takeaway from this analysis is that our performance is
independent of the size of the on-chip memory, even when we
scale-out the number of GPNs to process large graphs.

2) Sensitivity to Tracker Module Size: As discussed in
Section III-D, it is important to identify the effect of the
superblock dimension of the vertex management unit on the
system behavior. Therefore, we have evaluated three different
grouping dimensions, 32, 64, 128, and 256, to implement
the vertex management unit, which requires 3MiB, 1.75MiB,
1MiB, and 576KiB of on-chip storage, respectively. We have
used BFS and PR as representative programs and Twitter and
RoadUSA as input for our experiments.

The blocking technique cannot directly pinpoint the location
of active blocks in the memory. Therefore, evaluating the
overheads introduced by the search for active vertices in each
block is important. We measured the bandwidth waste of the
vertex memory for different blocking dimensions. Figure 10
summarizes the division of the vertex memory bandwidth
between useful reads, writes, and wasteful reads in proportion
to the peak theoretical bandwidth of the vertex memory. The
bandwidth marked as wasteful reads represents the bandwidth
used to read inactive vertices while searching a superblock for
active vertices. Figure 10 does not show observable change as
the size of the vertex management unit changes.

roa
du

sa
tw

itt
er

fri
en

ds
ter ho
st

ur
an

d

0

20

40
Sp

ee
dU

p
to

 L
ig

ra
BFS

PolyGraph
NOVA

roa
du

sa
tw

itt
er

fri
en

ds
ter ho
st

ur
an

d

0

100

200

300

400

CC

roa
du

sa
tw

itt
er

fri
en

ds
ter ho
st

ur
an

d

0

2000

4000

PR

roa
du

sa
tw

itt
er

fri
en

ds
ter ho
st

ur
an

d

0

20

40

SSSP

Fig. 4: NOVA vs. PolyGraph (iso-bandwidth 332.8 GB/s) vs. Ligra: For larger graphs, NOVA beats PolyGraph with 32 MiB
of on-chip memory while using only 1.5 MiB of on-chip memory.

roadusa twitter friendster host urand
Graphs

0

5

10

15

20

25

%
 M

es
sa

ge
s C

oa
le

sc
ed PolyGraph NOVA

Fig. 5: The percentage of messages coalesced in NOVA
compared to PolyGraph using BFS workload.

NO
VA

.rd
us

PG
.rd

us

NO
VA

.tw
it

PG
.tw

it

NO
VA

.fr
nd

PG
.fr

nd

NO
VA

.h
os

t

PG
.h

os
t

NO
VA

.u
rn

d

PG
.u

rn
d

0.00
0.25
0.50
0.75
1.00
1.25

Ex
ec

ut
io

n
Ti

m
e

(s
) BFS

Processing Time
Overhead Time

NO
VA

.rd
us

PG
.rd

us

NO
VA

.tw
it

PG
.tw

it

NO
VA

.fr
nd

PG
.fr

nd

NO
VA

.h
os

t

PG
.h

os
t

NO
VA

.u
rn

d

PG
.u

rn
d

CC

Fig. 6: Comparing execution time breakdowns between NOVA
and PolyGraph (PG). Although PG processes the graph faster
due to its fast vertex access, the overheads of switching slices
negate the benefits from increased locality.

RoadUSA shows significant bandwidth waste because it
has a high diameter with few active vertices. Furthermore,
high-diameter graphs commonly have smaller average degrees,
which creates less slack for the vertex management unit to
search for active vertices in the DRAM. In this case, the
vertex management unit’s prefetching mechanism aggressively
overfetches, resulting in the bandwidth waste. Figure 10 shows
that dense frontier workloads, such as PR (right), result in
a smaller wasted bandwidth than sparse frontier workloads
(BFS). When the frontier is dense, the number of active
vertices in a block grows, resulting in lower wasted bandwidth.
For the case of running BFS with RoadUSA, increasing the
size of the tracker module does not reduce the amount of
wasteful reads noticably. This is due to the particular sparsity
of the frontier. Morever, there are very few active vertices that

2 4 6 8
Number of GPNs

2

4

6

8

Sp
ee

du
p

twitter
host
friendster
urand
ideal

(a) BFS (asynchronous)

2 4 6 8
Number of GPNs

2

4

6

8

Sp
ee

du
p

twitter
host
friendster
urand
ideal

(b) BC (bulk-synchronous)

Fig. 7: Strong Scaling Analysis: How number of GPNs affect
performance for a fixed graph.

1(21) 2(22) 4(23) 8(24)
Number of GPNs (Graph Scale)

0

2

4

6

8

10

12

Ex
ec

ut
io

n
Ti

m
e

(m
s)

bfs bc cc pr sssp

Fig. 8: Weak scaling analysis: Increasing both GPNs and graph
size. using synthetic graphs RMAT21-24 and BFS. Ideally,
performance stays constant.

reside on DRAM (since the graph is small). Therefore, the
tracker module with 3 MiB of capacity does not have enough
resolution to reduce the wasted bandwidth. We observed a
drop in work efficiency when we changed the size of the
vertex management from 1 MiB to 576 KiB. For all other
performance evaluations, we used 1 MiB as the size of our
vertex management unit.

3) Sensitivity to Spatial Vertex Mapping: Figure 9b shows
the sensitivity to different vertex placement mechanisms.
We compared 3 placements: one that is load-balanced, one
that is locality-optimized (RABBIT [6]), and one random
vertex assignment with no preprocessing cost. We observed
that locality optimized shows at most a 20% improvement
compared to load-balanced and random due to better overall

roadusa twitter friendster host urand
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Sp

ee
du

p
32K 64K 128K 256K 512K 1M 2M 4M

(a)

roadusa twitter friendster host urand
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

Random Locality Load Balanced

(b)

bfs cc sssp pr
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

P2P NOVA

(c)

Fig. 9: (a) Sensitivity of a single GPN to size of cache in each PE. (b) Sensitivity to the arrangement of vertices across PEs
(8-GPN system. (c) Sensitivity to fabric topology. NOVA: the network described in Table II. P2P: PEs connected through a
point-to-point network with infinite bandwidth (8-GPN system).

576KiB 1MiB 1.75MiB 3MiB
0

50

100
BFS, twitter

576KiB 1MiB 1.75MiB 3MiB

PR, twitter

576KiB 1MiB 1.75MiB 3MiB
Storage Size

0

50

100
BFS, RoadUSA

576KiB 1MiB 1.75MiB 3MiB
Storage Size

PR, RoadUSA

Sh
ar

e
of

 M
em

or
y

Ba
nd

wi
dt

h
(%

)

Useful Read Write Wasteful Read

Fig. 10: Vertex memory bandwidth breakdown: useful access
(vertices read for reduction or propagation), and wasteful
access (inactive vertices read searching for active vertices).
The bandwidth distribution is insensitive to the storage size.

work efficiency achieved from lower network traffic. However,
both load-balanced and random vertex mapping exhibit lower
preprocessing costs than methods for optimizing locality, such
as RABBIT.

D. Characterizing the Performance of Interconnect

As we scale up the number of GPN to improve performance
or handle larger graphs, the required interconnect bandwidth
increases. To analyze the inter-GPN network requirements,
we studied the traffic pattern and bandwidth requirements of
PE-to-PE communication in the accelerator. We simulated a
system with 64 PEs connected with a point-to-point network
with no bandwidth restriction.

Figure 9c compares the performance of NOVA while con-
figured with a point-to-point interconnect against the perfor-
mance of NOVA while configured with a hierarchical inter-
connect similar to our proposal, using the same configurations
in Table II. Figure 9c shows that the performance of NOVA
(with the hierarchical interconnect) is similar to the config-
uration with the ideal point-to-point connection. The results
demonstrate that we can scaled-out the number of GPNs using
a crossbar without communication bottlenecks.

TABLE IV: Requirements to support WDC12. NOVA, Poly-
Graph, and Dalorex have 8, 16, and 256–4096 cores/node.
Every accelerator is scaled to fit WDC12 graph.

Accelerator
HBM
Stacks

DDR
Channels

SRAM/
eDRAM

Cores
of
Slices

NOVA 14 (56 GiB) 56 (1TiB) 21 MiB 112 1
PolyGraph 136 (1.088 TiB) - 4 GiB 2176 15
PolyGraph 128 (1 TiB) - 56 GiB 6400 1
non-sliced
Dalorex - - 1 TiB 249661 1

E. Scaling to Terascale Graphs

WDC12 [2] is a hyperlink graph representing 3.5 billion
web pages and 128 billion hyperlinks. This is representative
of future terascale graph analytics. We compared the resource
cost of NOVA with two recent works, PolyGraph [13] and
Dalorex [34]. We assumed that all accelerators use the vertex
size of 16 bytes and the edge size is 8 bytes. WDC12 requires
53 GiB for vertex and 959.15 GiB for edge capacity. Table IV
shows the system requirements to meet the minimum memory
for WDC12. We do not consider the additional capacity that
PolyGraph requires for temporal partitioning. Dalorex requires
1 TiB of on-chip capacity to support WDC12. Table IV shows
that PolyGraph and Dalorex will have extremely high costs
(many 100s of HBM stacks or a terabyte of on-chip memory)
required to process tera-scale graphs. NOVA still requires
significant resources to process large graphs, but by storing
the high-capacity data structure in lower-cost memory (storing
edges in DDR instead of HBM or SRAM) and vertices in
high-performance memory, NOVA scales to large graphs more
practically than PolyGraph and Dalorex.

F. FPGA Prototype

We implemented a register transfer level (RTL) model of
NOVA to make sure the gem5 model is correct and complete,
and ensure that proposed architecture is feasible and practical,
in terms of area and power. Table V shows the post synthesis
results of 1 GPN (which is a collection of 8PEs) on the Xilinx
Alveo U280 FPGA that has both DDR4/HBM memory which
are required in our proposal [48]. As described in section IV-C,
multiple GPNs could be connected together to realize larger
graph processing systems. Alveo U280 has enough resources

TABLE V: Hardware Implementation Details for a single GPN
running at 1 GHz. MPU: Message Processing Unit, VMU:
Vertex Management Unit, MGU: Message Generation Unit.

Unit LUT FF BRAM URAM Power (mW)
8 MPU 6032 7472 16 24 1120
8 VMU 5160 5560 64 64 1396
8 MGU 1640 4840 16 8 752
NoC 3 145 0 0 6

Total 1725
(1.12%)

2379
(0.8%)

12
(4.96%)

96
(7.1%) 3274

to fit 14 GPNs (112 PEs) and process graphs as large as
AliGraph (492.9 million vertices and 6.82 billion edges) [58],
compared to ScalaBFS [24] can accommodate graphs only as
large as Twitter (41.65 million vertices and 1.46B edges) on
the same FPGA.

VII. RELATED WORK

Hardware Accelerators: Previous hardware graph acceler-
ators improve performance by creating customized pipelining
mechanisms [3], [7], [18], [31], [32], [35], [38], [39] or by
decoupling data access and computation [28], [33], [52]. All of
these studies focus on improving off-chip memory efficiency
for graph processing. Mukkara et al. [30] reduces random off-
chip memory accesses using a hardware-accelerated traversal
scheduler that allows the system to improve locality. Graph-
Dyns [50] represents a new programming model to extract data
dependencies in graph processing dynamically. It uses a load-
balanced scheduling mechanism and a specialized prefetcher
for off-chip edge data access. ScalaGraph [51] proposes the
use of high bandwidth memory and a distributed memory
assignment to improve the edge throughput while eliminating
the atomic memory accesses. Chronos [3] avoids temporal par-
titioning and uses an on-chip cache and speculative execution
model to avoid coherency overheads. Ozdal [35] defines a
custom cache corresponding to each different data type (edge
indices, edge data, vertex info, vertex data) of each graph
object type to reduce the data access energy. Graphlily [20],
ScalaGraph [51], and PolyGraph [13] utilized HBM memory
for higher bandwidth access to the edge memory. However,
in all these designs, HBM was used only to improve the edge
bandwidth throughput. It should be mentioned that in all these
studies, the goal has been to improve performance by reducing
off-chip memory, whereas in NOVA, we prioritize scalability.

ScalaGraph [51] scales the number of PEs by reducing
the complexity of multiple PEs accessing a shared on-chip
memory by using a distributed on-chip memory hierarchy
among all PEs. In ScalaGraph, vertex information is stored on-
chip, and the graph is divided into disjoint subgraphs stored in
each PEs dedicated HBM. However, similar to previous work,
the performance of ScalaGraph comes from reducing off-chip
memory access by using a large on-chip scratchpad.

Recent studies have focused on reducing pre-processing
costs and off-chip memory access, while improving data reuse
on on-chip memory for GCNs and GNNs by partitioning the
graph during runtime. However, these studies utilize graph

traversal to identify highly connected parts of graphs (i.e.,
communities). These accelerators are specific to GCNs and
GNNs and are not designed to improve the performance of
simpler graph traversal applications like BFS. NOVA, on the
other hand, aims to enhance the performance of all graph
primitives, including graph traversals.

PIM-based Accelerators: A promising solution to remove
the memory wall challenges in the graph workloads is to use
processing in the memory (PIM). Some studies rely on emerg-
ing memory technologies such as ReRAMs [5] to perform
computing in memory in addition to storing data [12], [43],
[57]. Other PIM-based architectures use 3D stacked memory
technologies, such as Hybrid Memory Cube (HMC) [36] to
eliminate the irregular data movement [4], [54], [60]. These
accelerators propose using Hybrid Memory Cube and non-
volatile memories to store their randomly accessed data struc-
tures. In NOVA, depending on the capacity, performance, and
available resources, the architect can decide on the vertex or
edge memories.

Sofware Frameworks: Software solutions accelerate graph
applications by improving data placement. Software platforms
such as GraphIt [56] optimize performance by using a variety
of techniques, such as loop fusion, loop tiling, and memory
reuse, to minimize the number of memory accesses required
and reduce the amount of data that needs to be moved around.
For distributed systems, GiraphUC [19] uses a barrierless and
asynchronous model that removes global synchronization bar-
riers. However, it has high communication costs. Pregel [27]
is a model used for large-scale graph computing, but it suffers
from communication overhead. Recent work shown by Yin et
al. introduces Glign [53], which automatically aligns different
graph traversals of concurrent queries to maximize graph
access sharing. As a result, it can significantly reduce the cache
misses compared to other systems.

VIII. CONCLUSION

In this paper, we present NOVA, a scalable graph acceler-
ator with DRAM-based work management. NOVA achieves
high performance for large graphs by creating a balanced
system. NOVA is an appropriate design for deployments
where resources are limited. Compared to previous hardware
accelerators, NOVA uses off-chip memory bandwidth for both
sequential edge read and random vertex updates. The through-
put in NOVA for different graph sizes will remain constant,
while other studies require temporal partitioning, which results
in degradation of performance for large graphs. In addition,
we propose a scaled-out mechanism that allows scaling out to
multiple cores without communication overheads. Combining
these two insights, the scalable NOVA architecture charts the
path toward tera-scale graph analytic accelerators.

ACKNOWLEDGEMENTS

We thank the reviewers of HPCA 2025 for their invaluable
feedback. This work was supported by NSF grants 1925724
and 2225882, ARO award W911NF1910470, and Los Alamos
National Laboratory.

REFERENCES

[1] 9th dimacs implementation challenge: Shortest paths. [Online].
Available: http://www.diag.uniroma1.it/challenge9/

[2] “WDC - Hyperlink Graphs.” [Online]. Available: http:
//webdatacommons.org/hyperlinkgraph/

[3] M. Abeydeera and D. Sanchez, “Chronos: Efficient speculative paral-
lelism for accelerators,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 1247–1262.

[4] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
2015, pp. 105–117.

[5] H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp.
2237–2251, 2010.

[6] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2016, pp. 22–31.

[7] A. Ayupov, S. Yesil, M. M. Ozdal, T. Kim, S. Burns, and O. Ozturk,
“A template-based design methodology for graph-parallel hardware ac-
celerators,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 2, pp. 420–430, 2017.

[8] V. Balaji and B. Lucia, “When is graph reordering an optimization?
studying the effect of lightweight graph reordering across applications
and input graphs,” in 2018 IEEE International Symposium on Workload
Characterization (IISWC), 2018, pp. 203–214.

[9] S. Beamer, K. Asanović, and D. Patterson, “Gail: The graph algorithm
iron law,” in Proceedings of the 5th Workshop on Irregular Applications:
Architectures and Algorithms, 2015, pp. 1–4.

[10] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[11] Broadcom, “Bcm78900 series,” https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm78900-series, accessed:
2024-07-28.

[12] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-
nathan, J. Sampson, Y. Chen, and V. Narayanan, “Gaas-x: Graph
analytics accelerator supporting sparse data representation using crossbar
architectures,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 433–445.

[13] V. Dadu, S. Liu, and T. Nowatzki, “Polygraph: Exposing the value
of flexibility for graph processing accelerators,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 595–608.

[14] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages: A
mechanism for integrated communication and computation,” in [1992]
Proceedings the 19th Annual International Symposium on Computer
Architecture, 1992, pp. 256–266.

[15] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[16] M. Fariborz, M. Samani, T. O’Neill, J. Lowe-Power, S. B. Yoo, and
V. Akella, “A model for scalable and balanced accelerators for graph
processing,” IEEE Computer Architecture Letters, vol. 21, no. 2, pp.
149–152, 2022.

[17] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt,
Y. Lin, and A. Li, “I-gcn: A graph convolutional network accelerator
with runtime locality enhancement through islandization,” in MICRO-54:
54th annual IEEE/ACM international symposium on microarchitecture,
2021, pp. 1051–1063.

[18] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[19] M. Han and K. Daudjee, “Giraph unchained: Barrierless asynchronous
parallel execution in pregel-like graph processing systems,” Proceedings
of the VLDB Endowment, vol. 8, no. 9, pp. 950–961, 2015.

[20] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “Graphlily: Accelerating graph
linear algebra on hbm-equipped fpgas,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 2021, pp. 1–9.

[21] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol. 49, no. 2,
pp. 291–307, 1970.

[22] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web, 2010, pp. 591–600.

[23] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: an approach to modeling networks.” Journal
of Machine Learning Research, vol. 11, no. 2, 2010.

[24] C. Liu, Z. Shao, K. Li, M. Wu, J. Chen, R. Li, X. Liao, and H. Jin,
“Scalabfs: A scalable bfs accelerator on fpga-hbm platform,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2021, pp. 147–147.

[25] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein, “Graphlab: A new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

[26] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharad-
waj et al., “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[28] A. Manocha, T. Sorensen, E. Tureci, O. Matthews, J. L. Aragón,
and M. Martonosi, “Graphattack: Optimizing data supply for graph
applications on in-order multicore architectures,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 18, no. 4, pp. 1–26,
2021.

[29] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys (CSUR), vol. 48, no. 2, pp. 1–39,
2015.

[30] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 1–14.

[31] Q. M. Nguyen and D. Sanchez, “Pipette: Improving core utilization on
irregular applications through intra-core pipeline parallelism,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 596–608.

[32] Q. M. Nguyen and D. Sanchez, “Fifer: Practical acceleration of irregular
applications on reconfigurable architectures,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
1064–1077.

[33] M. Orenes-Vera, A. Manocha, J. Balkind, F. Gao, J. L. Aragón, D. Went-
zlaff, and M. Martonosi, “Tiny but mighty: Designing and realizing
scalable latency tolerance for manycore socs,” in Proceedings of the
49th Annual International Symposium on Computer Architecture, 2022,
pp. 817–830.

[34] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi, “Dalorex: A
data-local program execution and architecture for memory-bound appli-
cations,” in 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2023, pp. 718–730.

[35] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and
O. Ozturk, “Energy efficient architecture for graph analytics accelera-
tors,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp.
166–177, 2016.

[36] J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE Hot Chips
23 Symposium (HCS), 2011, pp. 1–24.

[37] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Mndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” ACM
SIGPLAN Notices, vol. 46, pp. 12–25, 6 2011. [Online]. Available:
http://iss.ices.utexas.edu/galois

[38] S. Rahman, N. Abu-Ghazaleh, and R. Gupta, “Graphpulse: An event-
driven hardware accelerator for asynchronous graph processing,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 908–921.

[39] S. Rahman, M. Afarin, N. Abu-Ghazaleh, and R. Gupta, “Jetstream:
Graph analytics on streaming data with event-driven hardware acceler-
ator,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 1091–1105.

[40] M. Samani, “Methodologies for evaluating memory models in gem5,”
Ph.D. dissertation, UC Davis, 2021.

http://www.diag.uniroma1.it/challenge9/
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78900-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78900-series
http://iss.ices.utexas.edu/galois

[41] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
2013, pp. 135–146.

[42] J. E. Smith, “Decoupled access/execute computer architectures,” ACM
SIGARCH Computer Architecture News, vol. 10, no. 3, pp. 112–119,
1982.

[43] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” vol. 2018-Febru. IEEE Computer
Society, 3 2018, pp. 531–543.

[44] N. Sundaram, N. R. Satish, M. M. A. Patwary, S. R. Dulloor, S. G.
Vadlamudi, D. Das, and P. Dubey, “Graphmat: High performance graph
analytics made productive,” arXiv preprint arXiv:1503.07241, 2015.

[45] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, p. 103111, aug 1990. [Online]. Available:
https://doi.org/10.1145/79173.79181

[46] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,” in
Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming, 2016, pp. 1–12.

[47] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking
high bandwidth memory on fpgas,” in 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2020, pp. 111–119.

[48] Xilinx, “Amd alveo u280 product brief,” 2024, accessed: 2024-08-
01. [Online]. Available: https://www.xilinx.com/publications/product-
briefs/alveo-u280-product-brief.pdf

[49] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 15–29.

[50] M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng,
P. Gu, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie, “Alleviating
irregularity in graph analytics acceleration: A hardware/software co-
design approach,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: Association for Computing Machinery, 2019, p.
615628. [Online]. Available: https://doi.org/10.1145/3352460.3358318

[51] P. Yao, L. Zheng, Y. Huang, Q. Wang, C. Gui, Z. Zeng, X. Liao, H. Jin,
and J. Xue, “Scalagraph: A scalable accelerator for massively parallel
graph processing,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2022, pp. 199–
212.

[52] P. Yao, L. Zheng, X. Liao, H. Jin, and B. He, “An efficient graph
accelerator with parallel data conflict management,” in Proceedings
of the 27th International Conference on Parallel Architectures and
Compilation Techniques, 2018, pp. 1–12.

[53] X. Yin, Z. Zhao, and R. Gupta, “Glign: Taming misaligned graph traver-
sals in concurrent graph processing,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, 2022, pp. 78–92.

[54] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 544–557.

[55] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous
graph processing framework for delta-based accumulative iterative com-
putation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 8, pp. 2091–2100, 2013.

[56] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“Graphit: A high-performance graph dsl,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–30, 2018.

[57] M. Zhou, M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Gram: graph
processing in a reram-based computational memory,” in IEEE Asia and
South Pacific Design Automation Conference, 2019.

[58] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou,
“Aligraph: A comprehensive graph neural network platform,” 2019.
[Online]. Available: https://arxiv.org/abs/1902.08730

[59] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system.” in OSDI, vol. 16, 2016,
pp. 301–316.

[60] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 712–725.

https://doi.org/10.1145/79173.79181
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf
https://doi.org/10.1145/3352460.3358318
https://arxiv.org/abs/1902.08730

	Introduction
	Background and Previous Work
	Overview of Graph Analytics
	Prior Work on Graph Accelerators
	Overheads of Temporal Partitioning
	Preprocessing Cost and Portability
	Switching Cost and Resource Utilization

	Microarchitecture of NOVA
	Overall Design of NOVA
	Message Processing Unit
	Message Generation Unit
	Vertex Management Unit

	System-level Architecture of NOVA
	Choice of off-chip Memory
	Spatial Vertex Mapping
	Interconnection Network

	Methodology
	Evaluation
	Comparison to State-of-the-art
	Scalability Analysis
	Sensitivity Analysis
	Sensitivity to Cache Size
	Sensitivity to Tracker Module Size
	Sensitivity to Spatial Vertex Mapping

	Characterizing the Performance of Interconnect
	Scaling to Terascale Graphs
	FPGA Prototype

	Related Work
	Conclusion
	References

