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Abstract—As SRAM-based caches are hitting a scaling wall,
manufacturers are integrating DRAM-based caches into system
designs to continue increasing cache sizes. While DRAM caches
can improve the performance of memory systems, existing DRAM
cache designs suffer from high miss penalties, wasted data
movement, and interference between misses and demands. In this
paper, we propose TDRAM, a novel DRAM microarchitecture
tailored for caching. TDRAM enhances existing DRAM, such
as HBM3, by adding small, low-latency mats to store tags and
metadata on the same die as the data mats. These mats enable
tag and data access in lockstep, in-DRAM tag comparison,
and conditional data response based on the comparison result
(reducing wasted data transfers), akin to SRAM cache mecha-
nisms. TDRAM further optimizes hit and miss latencies through
opportunistic early tag probing. Moreover, TDRAM introduces
a flush buffer to store conflicting dirty data on write misses,
eliminating data bus turnaround delays on write demands. We
evaluate TDRAM in a full-system simulation using a set of HPC
workloads with large memory footprints, showing that TDRAM,
on average, provides 2.65× faster tag checks, 1.23× speedup,
and 21% less energy consumption compared to state-of-the-art
commercial and research designs.

I. INTRODUCTION

Today’s high-performance computers leverage heteroge-
neous memory systems, combining high-performance mem-
ories such as HBM with high-capacity, lower-performance
ones to meet the memory demands of tasks like machine
learning and artificial intelligence. Interconnect technologies
like Compute Express Link (CXL) further enhance memory
heterogeneity by integrating local and remote memory pools.
Intel’s Sapphire Rapids CPU exemplifies this approach by uti-
lizing HBM DRAMs as cache [24], [62], effectively address-
ing the scaling limitations of SRAM [3]. The expanded cache
capacity and enhanced bandwidth of HBMs offer the potential
for improved data locality without programmer intervention.

However, the potential benefits of DRAM caches have not
borne fruit. Previous studies of DRAM caches have shown
that using standard DRAM devices as a cache can slow
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down applications with large memory footprints and high miss
rates [37], [59]. Current designs of DRAM caches, such as
Intel’s Cascade Lake [6], [37], store tags and metadata together
with the cache line data in the same DRAM. Storing tags and
data together reduces hit time for read demands [58]; however,
it significantly increases miss penalties, as a separate DRAM
read is necessary to retrieve tag and metadata for hit/miss
determination and status information, causing contention with
read demands. Additionally, all write requests, including those
hitting in the cache, require a DRAM read to fetch both
tag and data to ensure dirty data is not overwritten. This
exacerbates contention and leads to expensive turnaround
bubbles on the data bus [17]. These extra accesses for read
misses and write demands increase: (i) service time of missed
demands, (ii) contention in the read buffer, which extends
queue occupancy time, and (iii) wasted data movement and
energy consumption. Many of today’s applications have high
miss rates in DRAM caches, causing these issues to negatively
impact workload performance. Since SRAM caches cannot
scale to the capacities required by today’s applications, it
becomes imperative to enhance existing DRAM cache designs
to address these challenges.

In this work, we introduce TDRAM (Tag-enhanced
DRAM), a DRAM microarchitecture specifically tailored for
caching. TDRAM enhances existing DRAM, such as HBM3,
by adding a set of small, low-latency mats to store tags and
metadata on the same die as the data mats. These tag mats
enable faster access by reducing wordline and bitline lengths
compared to the data mats. The additional on-die storage is
sufficiently large to accommodate the tag and metadata for all
DRAM cache lines; thus, the tag store scales with the data
capacity. By placing the tags in separate fast mats, TDRAM
enables rapid on-die tag checking, which reduces the latency
for demand misses, mitigates contention on the DRAM read
queue, and decreases wasted data transfers (and thus energy).

TDRAM extends HBM3’s interface in three ways: (1) It
adds a unidirectional hit-miss (HM) bus to transfer the tag
check result and metadata to the controller. (2) It introduces



TABLE I: Comparison of TDRAM with Related Work

Tag & data in the same row
Tag storage type SRAM eDRAM DRAM RRAM

Examples
[32,40,
52,73]

eTag [69]
[22,25,27,28,30,33,34,39,48,49,

53,54,56,58,63,67,70]
R-Cache

[23]
[35] NDC [60] TDRAM

Tag check Before MC ¹ Before MC In MC In RRAM In DRAM In DRAM In DRAM
Processor die area High ² High Low Low Low Low Low

No Extra HW ✓ ✕ ✕ ✕ ✕ ✓ ✓
Tags scale with data ✕ ✕ ✓ ✓ ✓ ✓ ✓

Cond.3 column operation ✕ ✕ ✕ ✕ ✕ ✕ ✓
Low hit/miss latency ✓ ✓ ✕ ✕ ✕ ✓ ✓

Notes: ¹ MC: memory controller, ² Some prior work propose 3D-based solutions, 3Cond.: Conditional, denotes if DRAM data banks column operation is 
conditional to the tag check result.

Tag storage
maintained on: 

On the processor die

DRAM
Tag & data in separate storage

Off the processor die

two new commands: ActRd and ActWr, which access both tag
and data mats in lockstep. These commands check the tag
for the block and only send data to the controller when it is
needed. (3) It adds a flush buffer to store conflicting dirty data
from write misses, which eliminates costly turnaround delays
on the data bus and immediate cache line data transfer to the
controller. Compared to HBM3, this new design has 8.24%
total die area and 192 extra pins (10% increase) overhead.

TDRAM further improves performance by implementing
an early tag probing mechanism, which opportunistically
performs tag checks (without data access) in otherwise unused
command and HM bus slots. Tag probing returns early hit-miss
and status indication of a memory demand, allowing certain
operations (e.g., main memory access for read demand misses)
to start earlier. This mechanism also reduces the request’s
queue occupancy time by removing misses from the queue
early, allowing other demands to proceed with fewer stalls.

TDRAM is orthogonal to many prior works focusing on
improving DRAM caches performance by adding predictors,
prefetchers, tag caches, modifying coherence protocols, bypass
policies, and other application-specific mechanisms [22], [23],
[28], [35], [69]. TDRAM is designed so these techniques can
be applied to further improve caching performance. Overall,
TDRAM enables a perfectly scalable HBM-based cache with a
cohesive caching paradigm akin to processors’ SRAM caches.

We have extensively modeled TDRAM in the gem5 sim-
ulator [51] for a full-system cycle-level timing analysis. Our
evaluations using scientific and graph analytics applications
with large memory footprints have shown TDRAM provides
2.65× faster tag check, 1.23× speedup, and at least 21% less
energy consumption, compared to the commercial and research
designs such as Intel’s Cascade Lake, Alloy, BEAR [28], and
NDC [60].

In this paper, we make the following contributions:

• We introduce TDRAM, a new DRAM for caching with in-
DRAM tag management, for scalable HBM3-based caching.

• We extend HBM3’s interface with a unidirectional Hit-Miss
bus to transfer tag check results and metadata from DRAM
to the controller, decoupling it from data transfer.

• We optimize both read and write operations to access sepa-
rate tag and data banks in lockstep. The protocol selectively

streams data to the controller only when necessary, based
on tag comparison, reducing bandwidth bloat.

• We add a flush buffer to hold conflicting dirty data from
write misses which eliminates both the costly data bus
turnaround delays and immediate cache line data transfer to
the controller for write requests. TDRAM opportunistically
sends them to the controller when the data bus is idle.

• We propose opportunistic early tag probing in unused HM
and command bus slots to optimize miss latencies.

• In evaluations, we demonstrate DRAM caching using ex-
isting designs cause slowdown while TDRAM provides
1.11× speedup. We show TDRAM reduces energy con-
sumption by geo-mean of 12–21%.

II. BACKGROUND AND MOTIVATION

A. Tag Management in Existing DRAM Caches

Numerous studies have investigated the management of tag
and metadata (referred to collectively as tag) in hardware-
managed DRAM caches and Table I compares some of them
to TDRAM. Also, DRAM cache products, like Intel’s Xeon
series, offering gigabytes of DRAM cache, are available in the
market. In terms of storage size, a 64 GiB block-based DRAM
cache requires 3 GiB of storage for 3B tag per 64B blocks.
This is far beyond the cache sizes in high-end CPUs by AMD
(384 MiB in EPYC 9654P [1]) and Intel (105 MiB in Xeon
Platinum 8468H [5]) today. While SRAM caches are hitting a
scaling wall, tags-in-SRAM solutions (e.g., on processor die)
will add to the area overhead and price [32], [40], [52], [73].
Moreover, solutions that put tags on the processor die, e.g.,
eTag [69], severely limits scalability of DRAM cache capacity
by tying it to the tag capacity the processor chip can provide.
Thus, solutions that enable highly scalable DRAM caching
could be more effective when SRAM caches face limitations
in scaling.

Previous studies suggest storing tags in the same cache line
that data resides in [22], [25], [27], [28], [30], [33], [34],
[39], [48], [49], [53], [54], [56], [58], [63], [67], [70]. For
instance, in Alloy cache, instead of accessing a 64B block, 72B
(plus 8B ignored) must be accessed, causing misalignment in
column layout within DRAM rows and leaving unused bits
that causes scalability overhead. In Intel’s Xeon Series (e.g.,
Cascade Lake), tags are stored in the unused bits of ECC in
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Fig. 1: The breakdown of hit and miss ratios of DRAM cache.
The letters show high or low miss ratio.

commodity DRAM devices [37]. However, ECC bits are not
designed for this purpose. These designs depend on a DRAM
read to access the tag, which can create a serialization of
tag and data access (e.g., in write-hits), increasing bandwidth
bloat.

Some prior work proposed to store tags in separate storage
on DRAM die. R-Cache uses resistive RAM for tags [23].
Since tag access is on the critical path (i.e., data access in
DRAM cache depends on the tag comparison result), the tag
read and update latencies must be minimized. Resistive RAM
cannot provide the required speed. Moreover, the tag and
metadata are subject to frequent updates, which can wear out
resistive RAM quickly. Other works suggested DRAM-based
tag storage [35], [69]. These works optimize tag management
and data layout in DRAM rows for set-associative caches
that require multiple tag comparisons and activate tag and
data regions in parallel. However, they have to delay the
start of column operations till tag comparison logic finds the
corresponding column, which in fact internally ties the data
access to the tag access. Besides, they lack an efficient way
to handle write misses to dirty cache lines, requiring a data
read before write for correctness. These solutions depend on
speculative mechanisms (e.g., predictors and DRAM bypass-
ing with application-specific designs [35]), or need deep cache
coherence protocol changes. For example, BEAR cache needs
DRAM changes to support 80B accesses (like Alloy cache)
and requires: (i) DRAM to send eviction messages to the
LLC, (ii) LLC to send a DRAM cache existence indicator
to the DRAM [28], [50]. This approach ties the designs of
on-chip caches, memory controllers, and DRAM together,
complicating industrial adoption.

B. Opportunities to Improve DRAM Cache Designs

Tag check latency is always on the critical path of servic-
ing memory demands, affecting hit/miss latencies. Previous
designs storing tags in DRAM cache lines [28], [41], [58] or
in ECC bits of DRAM (e.g., Intel’s Cascade Lake) require a
DRAM read to retrieve the tag and data simultaneously, aiming
to parallelize access and improve hit latency. Our experiments
reveal their inefficiencies.

Using the gem5 simulator [51], we modeled 1
8 of the

Intel’s Xeon Max series [24], rounded up to 64 cores and
64 GiB of HBM (as DRAM cache). We implemented BEAR,
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Fig. 2: The average queueing delay in the read buffer, in Intel’s
Cascade Lake, Alloy, and BEAR DRAM caches, compared to
the system without a DRAM cache.

Alloy and Intel Cascade Lake DRAM cache, implementing
a direct-mapped insert-on-miss cache storing tags in DRAM.
We executed 28 HPC multithreaded workloads.Their memory
footprints are 0.1–80 GiB, and the DRAM cache size is 8 GiB.
In a full-system simulation, we employed the LoopPoint
technique [61].Notably, our methodology differs from previous
works, uncovering pathological pathways not observed in prior
studies. More details on our methodology are in §IV.

1) DRAM Cache’s Increased Hit Latency: In DRAM
caches employing standard DRAM devices with tags stored
within the device, the cache hit latency for LLC read misses
is equivalent to DRAM read latency. For LLC writebacks
(i.e., evicting dirty data from LLC), the hit latency comprises
a DRAM read latency (to retrieve the tag) followed by a
DRAM write (to write incoming data into the cache). Previous
efforts to parallelize or decouple tag and data accesses for
each memory request face challenges with LLC writebacks,
including those hitting the DRAM cache [35], [58], [69],
because the controller must complete the DRAM read for
tag comparison before initiating the incoming data write into
the cache to avoid overwriting any conflicting dirty data.
Commodity DRAMs necessitate reading the entire cache line
data to fetch the tag, irrespective of incoming write data size,
keeping the DRAM read on the critical path for write demand
and leading to access amplification (bandwidth bloat). Prior
research reported that DRAM caches’ access amplification
can reach up to 5 accesses [37]. Figure 1 illustrates the miss
ratio percentage of the DRAM cache and its breakdown in
our experiments. As shown in dark blue, many workloads
show significant LLC writebacks hitting the DRAM cache,
impacting its hit latency. BEAR proposes to change the LLC
structure, on-chip cache coherence interface, and DRAM con-
troller to exchange information on LLC writeback existence
in DRAM cache and DRAM cache evictions to avoid tag
check on LLC writebacks that will hit on DRAM cache [28].
However, these are deep and complicated changes at multiple
independent parts of the system and not easily adoptable by
the industry.

2) DRAM Cache’s Increased Miss Latency: In current
DRAM caches, all read and write requests (i.e., LLC’s read
misses and writebacks) must undergo a DRAM read to fetch
the tag. The controller handles these DRAM reads, including
those for LLC writebacks, in the same read buffer. This



arrangement heightens contention in the buffer, increasing the
queueing delay of all demands.

Figure 2 shows the average queueing delay of DRAM
reads in existing DRAM caches, compared to a system solely
equipped with main memory (no DRAM cache). As shown,
the bars are higher in the DRAM cache systems compared to
the system without a DRAM cache. Specifically in Cascade
Lake and Alloy, because every read and write demand has to
start by reading a tag in DRAM cache (even with predictors),
it increases contention in the read buffer and bank conflicts
when the tag reads occur. In BEAR cache, the LLC writebacks
that hit in DRAM cache bypass the tag check step, reducing
the queueing delay for these demands. However, the read-
misses still have to go through the tag check process. This
extended latency directly impacts the tag check latency for
all read demands that miss in the DRAM cache, leading to
a delay in fetching the missing line from the main memory.
This latency is crucial for the LLC read misses, as the CPU
observes their latency, which directly affects the overall system
throughput. As Figure 1 shows, the number of read misses (in
dark/light green) in the DRAM cache is significant. Thus, it is
important to optimize the miss latency of DRAM caches for
read demands.

3) Increased Bandwidth Bloat and Energy Consumption:
The data fetched by the controller during tag check benefits
only read demands hitting the cache or demands missing
to a dirty cache line. In cases of read/write misses to a
clean line (in Cascade Lake, Alloy, BEAR) and write hits (in
Cascade Lake and Alloy), the controller discards the read data
immediately after tag comparison, serving no purpose. In such
cases, existing DRAM cache designs introduce data movement
overheads by: (i) keeping DRAM’s command bus and banks
busy, and (ii) occupying data bus for unnecessary data trans-
fers. These extra communications between the DRAM and
the controller result in bandwidth bloat, wasting energy. This
inefficiency worsens as the miss ratio rises. Figure 3 quantifies
the relative amount of wasted data movement during the tag
check process. In many applications (e.g., ft, is,mg, ua) the
wasted data movement is significant. Note that Alloy and
BEAR caches have 80B (64B data, 8B tag and 8B ignored)
access granularity for every 64B memory demand, which
increases the unuseful data movement.

Moreover, in cases where the read data is a dirty line, it is
unnecessarily part of the critical path of servicing a demand.
A thoughtful design could put such accesses off the critical
path while ensuring correctness. Figure 1 illustrates that the
memory demands not using the read data in tag access (i.e.,
write-hits, read-miss-cleans, write-miss-cleans) are common.
Notably, write demands that miss to a dirty line in DRAM
cache are very rare, indicating an opportunity to cautiously
eliminate data reads in tag checks on write demands.

4) Goals: Based on our preliminary analysis, we have the
following goals when constructing a cache-optimized DRAM
architecture:

1. Reduce the hit latency by optimizing the tag check mech-
anism and write-hits, and execute tag check entirely within
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Fig. 3: Intel’s Cascade Lake, Alloy, and BEAR DRAM caches’
bandwidth, broken to useful and unuseful data movement,
normalized to total bandwidth. In Cascade Lake and Alloy
all read/write miss-cleans and write-hits, after tag comparison
(which also retrieves data) the controller immediately discards
the data (serving no purpose), shown as unuseful. BEAR
eliminates the unuseful data movement for write-hits only.
Alloy and BEAR have a longer DRAM burst than Cascade
Lake, which increases the unuseful data movement.

DRAM; 2. Reduce the miss latency, specifically for reads by
reducing tag check and queueing delays; 3. Reduce the wasted
data movement on write-hits, read-miss-cleans, and write-
miss-cleans to save energy; and 4. Support write-miss-dirty
(i.e., we cannot simply overwrite on writes) for correctness
not necessarily performance since they are uncommon.

III. TAG-ENHANCED DRAM DESIGN

In this section, we describe the details of TDRAM, a new
DRAM crafted for caching. TDRAM is designed in the same
vein as other custom DRAMs such as RLDRAM [9]. Given
the slowdown in SRAM scaling, industry is already integrating
DRAMs as caches [17], [24], [64] and announced future
DRAM devices specialized for caching [15]. TDRAM is a
novel microarchitecture in this track.

A. HBM3 as the Basis of TDRAM

We choose HBM3 as the basis of TDRAM since the latest
products (e.g., Intel’s Sapphire Rapids) have used HBM as a
cache for a backing store (DDR5) and HBM3 is the latest
version of this technology. However, what we propose for
TDRAM is perfectly applicable for other technologies, since
we separated the data storage from tag and keep their underly-
ing technology intact. When writing this paper, we envisioned
TDRAM as an optional extension to current DRAM designs
and we try to keep the protocol as similar to DDR as possible.
Redesigning DRAM from the ground up offers full opti-
mization but introduces challenges: (i) Established memory
standards have extensive ecosystem support, including supply
chains, software stacks, and architecture compatibility. Starting
from scratch would need creating this ecosystem from scratch
too, adding complexity and cost. (ii) An incremental approach
allows for controlled risk and targeted enhancements, making
it a lower-cost, lower-risk path to innovation.

HBM3 DRAMs stack multiple DRAM die into a single
package, supporting up to 64 GiB capacity using 12 to 16-
high stacks [47]. The peak bandwidth is 1TB/s when running
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Fig. 4: TDRAM’s architecture and bank organization. The logical rows and columns in the tag bank match those in the data
bank, but the tag portion is divided into smaller sections, resulting in more tag mats than data mats in a bank.

at 8 Gbps across 16 independent channels with 64b data
(DQ) and 10b Row command (R) and 8b Column command
(C) buses. Each DQ channel is split into two 32-bit pseudo-
channels (PCs) that share the same R and C buses, with
each PC providing 32B access granularity [7], [12]–[14]. The
wires connecting the high pin count interface between the
DRAM and host (1024 DQs, 288 command/address (CA)
buses, and more than 650 pins for additional channel and
global functions), are implemented in TSMC’s InFO or silicon
(e.g., a silicon interposer) to support the high pin and trace
densities required for this technology.

Regarding the protocol, a command decoder receives com-
mands and addresses from the memory controller over a CA
bus. When reading data from DRAM, an activate command
provides a row address to move all bits in one row of a
bank to sense amplifiers (or sense amps). A separate read
command provides a column address to select a subset of the
bits from the sense amps to be returned across the DQ bus.
Write commands work similarly, providing data to be written.

B. TDRAM’s Interface
TDRAM leverages the HBM3 interface and introduces three

changes as shown in Figure 4A: (i) the R and C buses are
merged into a single CA bus (i.e., like DDR DRAMs), (ii) each
of the 32 PCs is converted to an independent channel with its
own 8b CA bus and 32b DQ bus, and (iii) a 4b unidirectional
Hit-Miss (HM) bus is added to each channel. Converting PCs
to independent channels simplifies memory controller design,
as each PC already has its own memory controller [11] and
command/address arbitration for the shared R and C buses
in HBM3 can be removed. The CA bus runs at the same
speed as the DQ bus. Data transfers are protected by ECC
and redundancy as is done in HBM3.

TDRAM uses the HM bus to communicate the result of tag
comparison (hit/miss), status information (valid, dirty, etc.),
and tag of dirty data (for main memory writeback), to the
host. The HM bus runs at full data rate. Data packets are much
longer than the HM bus occupancy for a single transaction.
Thus, the tags and metadata can be transferred over HM bus in
a number of beats (e.g., 6 for 3B metadata) without bandwidth
becoming an issue. Each channel has 22 additional signals
(clocks, strobes, ECC, etc.). The DRAM has 52 additional
global signals (reset, IEEE1500, etc.) for a total of 2164
signals, a 9.7% increase over HBM3. The signal counts table in
Figure 4A compares TDRAM’s signals overhead to HBM3’s.
The HBM3 package has 320 unused bump sites in the area
for address and data signals [7], enough to accommodate the
additional 192 signals (2b CA + 4b HM = 6, per 32-bit
channel) in TDRAM, allowing it to use a similar package.

C. TDRAM’s Internal Architecture

1) Data Storage and Access Granularity: TDRAM uses
the standard bank microarchitecture of HBM3 for data storage.
CPUs from Intel and AMD operate on 64B cache lines, but
HBMs are designed to provide 32B granularity, TDRAM
pairs banks in different bank groups and staggers accesses to
them to achieve 64B granularity at lower latencies. Figure 4B
shows the layout of these paired banks. The controller views
the paired banks as one logical bank and schedules accesses
accordingly. To simplify the management of paired banks,
the controller issues a single command (e.g., activate, read,
etc.) and the logic on the base die replicates it, staggering
it in time across the bank pair. Pairing banks across bank
groups simplifies the controller management since the design
eliminates the back-to-back accesses to the same bank group.



2) On-Die Tag Storage: TDRAM stores tags, metadata,
and their ECC in separate mats on the same die as the data
mats. TDRAM uses a set of small low-latency mats to provide
fast tag access. These low-latency mats allow parallel tag and
data lookup, with hit/miss determined before the data becomes
available in the data mats. The tag mats are placed at the edge
of each bank (Figure 4C). Latency for the tag mats decreases
because: (1) the tag storage size is much smaller than the data
storage size (3B tag per 64B cache line); (2) we use more
tag mats than data mats, further reducing the size and latency
of tag access. While the logical number of rows and columns
in the tag bank matches that of the corresponding data bank,
the tag portion is divided into smaller sections to improve the
latency. Thus, there are more mats in the tag banks compared
to the data banks (Figure 4C), leading to much lower latency.
Due to their smaller size, these mats have shorter wordline
and bitline lengths than the data mats which improves latency
as shown by prior research [65]. Our design scales the tag
mats by 1

2 in each direction, reducing the wordline delay time
and bitline charge sharing completion time. We take this ratio
as a starting point based on the prior work [65]. This choice
is technology-dependent and not integral to our design. We
increase the number of centralized decoder and IOSAs to
further improve the latency. The tag mats will have the same
refresh rate as the data mats and are refreshed in parallel with
data mats. This does not add performance overhead; however,
it adds to the energy consumption that we take it into account
in §V-C.

Alternatively, the tag arrays can be implemented on a
separate die within the TDRAM stack. However, an advantage
of placing tags on the same die as the cache line data is that
tag storage scales with data storage. For the remainder of this
paper we assume the tags are on the same die as the data.

3) Tag/Metadata Access and Tag Comparison: We add
two new DRAM commands to the HBM3 command set:
activate-read (ActRd) and activate-write (ActWr). When a
ActRd or ActWr command is issued to a bank, the tag mats are
activated in parallel with the data mats. To avoid sending tags
and metadata back to the controller, TDRAM uses on-die tag
comparators implemented in the IOSA area of the tag mats to
determine hit/miss status of an access. Then, the HM result is
routed to the periphery of the chip for output on the HM pins.
The HM result is also sent to the column decoders of the data
mats where it is used to gate the column decode logic (like
SALP [43]). If the tag comparison results in a hit or in a miss
to a dirty cache line for read demands, the data is transferred
through the DQ bus. If the tag comparison results in a miss
to a clean cache line, the column decode does not happen and
no data is transferred on the DQ bus, saving energy.

To improve reliability, TDRAM has separate ECCs for tag
and data. ECCs for tags are analyzed and corrected if needed
by on-DRAM-die circuitry as in the baseline HBM3 [7]. There
are fewer bits in the tags and metadata (3B), so it can use
a different algorithm than the data. For instance, it can use
symbol-based Reed-Solomon encoding. For a 1PB address
space, a direct-mapped TDRAM has 14-bits tag + Valid +

Dirty = 16 bits which leaves 8 bits ECC to cover the 16 bits.
TDRAM uses the same tag-write mechanism as is used

during DRAM writes. Like existing HBMs, there is a state
machine on the base die which initializes ECC, metadata,
etc. TDRAM extends the logic on base layer built-in self-
test (BIST) block to also initialize the tags to zero at startup.
Figures 5, 6, and 7 show the timing transactions of read and
write operations in TDRAM and are discussed in §III-D.

4) Tag Mats Timing Values: TDRAM architecture mini-
mizes the tags access latencies using small low-latency mats as
discussed in §III-C2. Given the proprietary nature of DRAM
timings (especially for low-volume devices like HBM), we
choose to rely on publicly available data closely matching
our design. For our evaluations we use timing parameters for
the tag mats that are based on RLDRAM. The RLDRAM
spec values (e.g., tRL=15ns and tRC=8ns) match, or are
more optimistic than, our values (e.g., tRCD TAG+tHM=15ns
and tRC TAG=12ns). Furthermore, these values and internal
TDRAM timings were also correlated with prior work analyz-
ing the use of smaller mats [65] to set a strict upper bound
on the latencies. In fact, we expect in modern technology the
timing parameters would be even faster. However, we do our
analysis with conservative numbers; thus, we base our timing
parameters on public data sheets of RLDRAM which similarly
has smaller mats than normal DRAM. Table III shows a list
of these timing values.

Specifically, we explain the tRL core and tHM int values.
tHM int = tCCD L+tHM detect (which is a fast equal com-
parison). Address comparisons are already done in DRAMs
today to quickly determine if every row or column address
that the DRAM receives is a repaired row or column. We set
tHM detect to 0.5ns (one 2GHz clock cycle) for the fast equal
comparison based on discussions with DRAM designers. The
use of tHM int depends on tRCD since a read operation cannot
occur until tRCD is met. In our design, tRCD = 12ns which is
longer than tRCD TAG+tHM int=10ns, effectively hiding the
tag access and hit/miss detection latency. tHM int was also
correlated with prior work [65], which breaks ACT-to-data
delay into: 47%-sensing, 26%-address-decode, 20%-MUXing
(transfer+rate-conversion), and 7%-IO. The column decode is
done in parallel to sensing (tRCD) with our ActRd/ActWr
commands. Finally, the I/O delay is not relevant to internal
timing. A portion of the MUXing delay, the delay to move
data out of the IOSA, is relevant to internal timing which
was optimized in our design with smaller mats. Based on
RLDRAM3, the full delay from a read command to the start
of data on the DQ bus is 15ns, roughly half the latency
of normal DRAM; thus, supporting our tHM int=2.5ns. On
the other hand, to ensure dirty data is not overwritten in
the SA, tRL CORE (used in write operations as illustrated
in Figure 6) needs to be less than or equal to intRD-to-
WR data Delay+tBURST/2=9ns. We performed our evalua-
tion using tRL CORE=tCCD L=2ns. For both tHM int and
tRL CORE parameters, other delays (e.g., tWL and tWR in
Figure 6) dominate the latency as shown in the figure.



TABLE II: TDRAM’s cache operations on different accesses.
Cache Access CMD DQ Activity HM Bus Later Actions
Read hit to clean

A
ct

R
d

Hit Data Hit None
Read hit to dirty Hit Data Hit None
Read to invalid None Miss Read main mem & fill
Read miss to clean None Miss Read main mem & fill

Read miss to dirty Dirty Data Miss, Dirty Tag Read main mem & fill
Writeback dirty data

Write to invalid
A

ct
W

r
Wr Data Miss None

Write miss to clean Wr Data Miss None
Write miss to dirty Wr data Miss, Dirty Tag Dirty data to flush buffer
Write hit to clean Wr Data Hit None
Write hit to dirty Wr Data Hit None

5) Tag Storage Area Overhead: A 64 GiB direct-mapped
cache can support 1 PB address space using a 14-bit tag. We
assume 3B of tag and metadata for each 64B cache line. Tags
are stored only in the even-numbered bank group of the pair,
and the result of the tag comparison is communicated to the
other (odd-numbered) bank group through an internal bus.

We estimate the die size impact of tag storage, on-die
comparison, and control logic compared to a baseline HBM3
memory as follows. HBM3 stores an additional 6B of informa-
tion (2B metadata and 4B parity) for every 32B of data (i.e.,
total column size is 38B) across 19 mats as shown by Park
et al. [57]. The HBM3 die photo shows that banks (including
mats, BLSAs, and Sub-WL drivers) occupy about 66% of die
area. The remaining 34% of die area includes shared resources
like through silicon vias (TSVs), IOSAs, per-bank group ECC,
and column decoders.

We use four smaller tag mats per data mat to reduce the
row cycle time by reducing the bit line and word line lengths.
Son et al. show that the overhead of changing the aspect ratio
by a factor of 4 is 19% [65]; however, we estimate a more
pessimistic 24.3% when we scale by 1/2 in each dimension,
based on our discussions with DRAM designers. Additionally,
we only need tag mats in the even banks, further reducing
the overhead. Thus, even banks require 24.3% additional area
for the tags and the data banks occupy 66% of the die. So
the overall impact on die size is 24.3% × 0.5 (only even
banks) × 0.66 (area for banks) = 8.02%. We also add additional
area for wire routing (e.g., to route hit/miss signals from the
even bank to the odd bank), resulting in 8.24% die area impact.

D. Protocol

TDRAM’s protocol is similar to traditional DRAM’s, with
modifications to minimize tags latency and bandwidth bloat.
TDRAM has combined ActRd and ActWr commands that
activate a row and read/write a column at both tag and data
banks with an auto-precharge for close-page policy. These
commands include the row and column addresses, bank group,
bank, and tag address needed to determine cache hit/miss.
Internal state machines in TDRAM handle sequencing and
timing of the activate and column operations to the banks and
SAs. Read/Write data appears at fixed offsets on the DQ bus
from these commands, similar to modern DRAMs.

Having a single command to access tag and data banks
reduces command amplification and saves energy [4], [8], [9].
Moreover, it simplifies the memory controller since the tag
and data banks have the same number of rows and columns.

CA

HM

DQ

 BG0 CMD

tRRD

ACT tRCD

tRL

tRL

RD tRTP PRE

BG1 CMD ACT
tRCD

Data Data

Hit

BG0 CMD ACT
tRCD_TAG

Tag Mats

RD
tRTP PRE

ActRd (AP)

tRTP_TAG

tHM

RD PRE

32B 32B

Data Mats

Mem
Ctrlr

tHM_intTo both banks
in the BG

Hit

Hit

Fig. 5: Timing transactions of a read operation in TDRAM.
The timing is the same for a read miss dirty.

A single address is decoded for both tag and data, allowing
their banks to be activated by a single command in lockstep.
TDRAM’s controller can adopt any scheduling policy such
as first-ready first-come first-serve (FR-FCFS). Table II shows
the operations the cache performs per access.

1) Read Operations: The low-latency tag mats allow hit-
miss determination to occur before cache line data is available.
Figure 5 shows the timing transaction of commands involved
in read operations of TDRAM. For reads, the HM response
will precede the DQ bus transfer, allowing a conditional
response based on the hit/miss result: (1) on a read-hit, cache
line data is returned to the controller. (2) On a read-miss-clean,
no read command is issued and no cache line data is returned
to the controller. The unused DQ slot can be used to transfer
data from the flush buffer (§III-D2) to the controller. (3) On a
read-miss-dirty, the dirty data is returned to the controller with
the same DQ bus timings used to return data on a cache hit.
The dirty tag is returned on the HM bus along with a dirty-
miss indication. When the controller receives miss indicator
for read requests on the HM bus, it can initiate a backing store
read to fetch the data needed (for the cache line fill and LLC
response) before dirty data (if any) arrives at the controller.
Early tag probing optimizes this further (§III-E).

2) Write Operations: Writes must avoid overwriting a
dirty cache line with the new data on a write-miss – a rare
occurrence but one that needs to be handled correctly. All
existing DRAM caches have to either serialize the cache
line data read (sending it back to the controller) and the
incoming write data [58], or rely on complex coherence pro-
tocol modifications [28], [50] and application-specific DRAM
bypass techniques [35]. TDRAM avoids these inefficiencies by
adding a flush buffer that enables a general-purpose approach
for writes. The flush buffer is shared among all banks, and
operates similar to how a write buffer in a controller stores
data to be written to the DRAMs. The flush buffer (along
with additional logic to support caching) is placed on the
existing base layer which already contains logic to support
HBM protocol, etc. The base layer is not area limited, thus
can support the needed buffer and logic.

TDRAM issues an ActWr command that initiates an internal
tag and data access. Once the tag comparison result arrives to
the data banks, in case of hit and miss-clean, only an internal
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write command is issued. If the tag check indicates a miss-
dirty, an internal read command followed by an internal write
command are issued. Figure 6 shows the sequence of these
commands. TDRAM places the dirty data into the flush buffer
and then writes the new data to the DRAM. The flush buffer
needs to be sized large enough such that the controller does
not need to interrupt a sequence of cache writes for the sole
purpose of emptying a full flush buffer, which would require
insertion of a full DQ bus turnaround from write to read and
then back to write direction. Since write-miss-dirty is expected
to be a relatively rare event, the flush buffer can be sized
modestly (e.g., 16 entries, §V-E) to eliminate virtually any
need to require a forced emptying of the flush buffer. There
will be a small read-to-write turnaround internally to support
moving the dirty data from the DRAM bank to the flush buffer,
but the much larger turnaround on the DQ bus to send the
data to the controller, can be avoided. A sequence of cache
writes from the controller would not experience any delay
on the DQ bus due to the write-miss-dirty. Direct RDRAM
uses a similar approach implementing a Write Buffer and
a Write/Retire mechanism to minimize turnarounds due to
resource conflicts in the DRAM core [2]. Next, we explain
how TDRAM opportunistically unloads the flush buffer.

Unloading the Flush Buffer: TDRAM transmits the
dirty data in the flush buffer to the controller opportunistically
or on-demand, as follows: (i) when the DQ bus is idle, such
as during refresh operations, (ii) in read-miss-clean accesses
in which DQ is in read-state and is not used for data transfer,
and (iii) if the flush buffer becomes full, the controller sends
explicit read from flush buffer commands, transmitting multi-
ple entries as a group to amortize any bus turnarounds. The
controller has a global knowledge of the addresses in the flush
buffer. If the DRAM cache receives a read request to any of
the addresses in the flush buffer, the controller will get the data
from the buffer. In case of a write demand to an address in the
flush buffer, the incoming write demand will proceed into the
DRAM cache and the controller removes the older data from
the flush buffer. Our analysis (§V-E) has shown if we assume
16 entries for the buffer, transferring during read-miss-cleans
and refresh cycles, prevents its overflow.

E. Early Tag Probing Optimization

Early tag probing tries to expedite the tag check of a demand
in periods that tag-related resources are free while the data-
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related resoures are busy. Thus, it accesses tag banks without
accessing the data banks, and returns the result to the controller
on the HM bus. TDRAM’s HM and command buses have
unused bandwidth, because: (i) tag banks are faster than data
banks; therefore, the busy time of tag banks is shorter than
that of data banks, and (ii) the size of the packets transferred
on HM bus (3B) is much smaller than DQ bus (64B), while
both buses work at the same frequency. We use this unused
bandwidth for early tag probing, in which the controller can
query the status of a cache line and get an earlier hit/miss
determination so that following actions (e.g., read from main
memory for read demand misses) can begin earlier. As shown
in Figure 7, in a set of pipelined read transactions, while the
data bus is fully occupied by back-to-back data transfers, the
CA bus and HM bus are not. Tag probing fills in the unused
CA bus cycles with probing commands to perform a tag access
and comparison.

1) Probing Mechanism: Tag probing accesses only the tag,
transmitting results via HM bus without accessing cache line
data. Figure 7 distinguishes MAIN slot commands, accessing
tag and data via both HM and DQ buses, from PROBE slot
commands, which solely access tags and the HM bus. While
TDRAM without probing accelerates the tag check through
fast tag bank access, the probing mechanism aims to reduce the
tag check latency by minimizing the queue occupancy time of
the requests waiting to be scheduled for tag access. The early
tag probing lowers the contention in the read buffer, requiring
fewer entries and reducing the average queueing delay. E.g.,
if the probing indicates a miss-clean for a read demand, the
request can be removed from the read queue upon arrival of
the tag check result to the controller on HM bus. Moreover, it
reduces the miss latency. E.g., if a tag probe of a read demand
results in a miss, the main memory access starts earlier than if
the system waited for the MAIN slot for tag check, effectively
removing the cache line data access from the critical path. A
future MAIN slot can then be used for the cache line fill.

2) Selection Policy: Once the controller finds a PROBE
slot, amongst all tag check requests that can be issued at that
time (i.e., no bank conflict), it picks the youngest request
to minimize the average queueing delay in the controller.



Even though the write packets can also use probing, TDRAM
focuses on using these slots for read requests to reduce
potential bank conflicts induced by early tag probing. Our
analysis has shown that the probing-induced bank conflicts
are not common (less than 1% of total demands).

IV. EVALUATION METHODOLOGY

A. Modeled System for Evaluation

Many of the previous DRAM cache studies [28], [41], [42],
[58], [71] rely on trace-based or functional-first simulators,
which might not faithfully simulate the behavior of appli-
cations that take different paths depending on I/O or thread
timings [29]. In contrast, we use an execute-in-execute full-
system simulator gem5. Notably, prior DRAM cache research
often omits full-system simulations, failing to capture OS
effects. Bin et al. demonstrated that OS kernel bottlenecks can
degrade memory access latency in DRAM caches [31]. We
extended gem5’s memory system and implemented TDRAM
device and DRAM cache controller [18], [19]. This device uses
the timing parameters listed in Table III. §III-C4 explains the
details of timing values setup for the tags in TDRAM.

We have integrated alternative DRAM cache designs into
gem5 to assess the performance of TDRAM cache: Cascade
Lake: our evaluation baseline, a state-of-the-art commercial
DRAM cache in Intel’s Cascade Lake. This is a block-granule
direct-mapped insert-on-miss cache storing tag and metadata
in DRAM. Alloy: designed to reduce hit latency [58]. We
chose Alloy since it has the most similar design principles to
TDRAM. Alloy’s 80B burst size is modeled with increased
timing parameters (e.g., tBURST, etc.). BEAR: designed to
reduce bandwidth bloat [28]. NDC: Native DRAM Cache is
a recent proposal to provide a scalable DRAM cache while
reducing the data movement due to caching [60]. Unlike
TDRAM, it does not have an early tag probing mechanism.
TDRAM: our proposed work. Ideal: an ideal cache which
knows hit/miss and metadata status in zero latency. This sets
an upper-bound for Tags-in-SRAM designs.

For a fair comparison between designs, we use the same
timing parameters for modeling the DRAM cache device
unless a parameter does not apply to a DRAM cache (e.g.,
tRCD TAG in Table III is only used for TDRAM). We modeled
1
8 of a target system similar to Intel’s Xeon Max series [24],
rounded up to 64 cores and 64 GiB of HBM (as DRAM cache)
as shown in Figure 8. Table III shows the detailed parameters
of the modeled system.

B. Benchmarks

Many past studies use copies of benchmarks across multi-
ple cores, neglecting inter-thread dependencies in real-world
workloads. In contrast, we leverage multithreaded HPC work-
loads to fully utilize simulated cores, enhancing realism. We
use class C and D of NPB [20] and large synthetic graphs
for the GAPBS [21] with inputs 22 and 25. The performance
of same workload at different classes or inputs must not be
compared together, as the workload has different execution
phases in different cases. They should be seen as 28 separate

TABLE III: System Configurations
Processors On-chip Caches

Number of cores 8 Private Inst. 32 KB
Frequency 5 GHz Private Data 512 KB

Shared LLC 8 MB
DRAM Cache Controller DRAM Cache Device (TDRAM)

Read & Write Buffers 64 entries each Capacity 8 GiB (8 channels)
Writeback Buffer 64 entries Peak BW 32 GiB/s per channel
Conflicting Request Buffer 32 entries
Sched. Policy FR-FCFS

Main Memory (DDR5)
Capacity 128 GiB (2 channels)
Peak BW 32 GiB/s per channel

Read/Write Buffer 64 entries each
Timing Parameters (ns) (same for all evaluated DRAM cache designs)

Clk=2 GHz, data rate = 8Gbps, close page, RoCoRaBaCh, tBURST = 2, tRCD = 12,
tRCD WR = 6, tCCD L = 2, tRP = 14, tRAS = 28, tCL = 18, tCWL = 7, tRRD = 2, tXAW =
16, tRL core = 2, tRTW int = 1, For Tag Banks in TDRAM only: tHM = 7.5, tHM int=2.5,
tRCD TAG = 7.5, tRTP TAG = 2.5, tRRD TAG = 2, tWR TAG = 1, tRTW TAG = 1,
tRC TAG = 12
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Fig. 8: The target system for evaluation. We model 1
8 of a

target system similar to Intel’s Xeon Max series.

workloads. We employ LoopPoint, a sampling technique for
multithreaded applications, tracking work progress via global
loop instruction counts [16], [61]. Thus, we ensure the execu-
tion phases remain the same across different designs. Using a
checkpoint for each application, we ensure that all runs start
at the same system state (e.g., warmed-up SRAM and DRAM
caches) for a fair comparison across different configurations.

The memory footprints of the workloads are 0.1–80 GiB,
giving different miss ratios in the 8 GiB DRAM cache
(Figure 1). We grouped our applications based on their miss
ratios: (i) below 30% are low miss ratio, and (ii) above 50%
are high miss ratio. There are no workloads in middle range.

V. RESULTS AND DISCUSSION

A. Impact of Optimizing Tag Check Mechanism

Figure 9 compares the average tag check latency of TDRAM
to Intel’s Cascade Lake, Alloy, BEAR, and NDC caches. Tag
check latency is the time from when the controller issues a
tag read request to when the result is ready at the controller.
The reported numbers are measured in the controller during
simulation and include the queue occupancy time, DRAM
cache tag access time, tag compare latency, bus latency, etc.
The tag access time in Cascade Lake, Alloy, and BEAR
designs consist a read from cache line data, while for NDC and
TDRAM is an access to the separate tag banks in the DRAM
cache. All designs use the same timing parameters (Table III)
for cache line data access. NDC uses tag timing parameters
discussed in the work [60] and TDRAM uses validated timings
for tag storage discussed in §III-C4. TDRAM achieves faster
hit/miss indication across all applications compared to all
designs by parallelizing tag and data access and employing
conditional data response. TDRAM also incorporates early
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Fig. 10: Average queueing delay in read buffer. Lower is better. TDRAM’s queueing delay is shorter than all the prior designs,
leading to reduced tag check latency.

tag probing, further expedites this process by opportunistically
performing tag checks. On a geo-mean, TDRAM’s tag check is
2.61×, 2.65×, 2×, and 1.82× faster than Cascade Lake, Alloy,
BEAR, and NDC, respectively. We also analyzed the tag check
latency for TDRAM without early tag probing which had a
result similar to NDC, hence it’s omitted in the figure.

Tag check latency is on the critical path of the hit and miss
latencies. For read demands that miss on DRAM cache, this la-
tency directly impacts the LLC miss penalty, thereby affecting
CPU throughput. Improving the tag check latency accelerates
the fetch of missing line from the main memory (response to
the LLC), thus, reduces LLC miss penalty. Figure 9 shows how
much faster this main memory read can be issued in TDRAM.

In Cascade Lake and Alloy, the controller issues a DRAM
read for tag check, placing them in the read buffer. I.e.,
all read and write demands compete in the same queue for
DRAM read access in their tag check process. BEAR cache
has the same policy but bypasses tag checks for write-hits
only. NDC cache has a separate tag bank, but the tag check
latency is higher than TDRAM due to the lack of early tag
probing which leads to requests remaining in the controllers’
buffers longer. The increased read requests causes contention
in read buffer, increasing queue occupancy time and extends
the process time of read demands. Figure 10 shows the average

queueing delay of these read requests: the time taken since a
read request enters the queue, until the read command for
that demand is issued. The figure shows that the queueing
delay is significantly shorter in TDRAM compared to other
designs, thanks to TDRAM’s early tag probing mechanism. By
employing opportunistic tag probing, TDRAM allows a read
request to leave the read queue as soon as the hit-miss indicator
arrives on the HM bus in the case of a miss-clean, without even
activating the data bank. This leads to fewer bank conflicts in
the system and significantly impacts bank availability, resulting
in reduced access time for future demands. For all read-misses
in TDRAM, the controller request a read from main memory
as soon as the miss indicator arrives on HM bus.

The benefit of early tag probing depends on the workload.
Read-misses gain the most benefit from this mechanism as
it accelerates main memory access with no overhead. With a
smaller DRAM cache size or workloads with larger memory
footprints (resulting in higher miss rates), TDRAM benefits
more from early tag probing. In essence, TDRAM permits
misses to occur while minimizing the miss penalty.

B. Overall Performance

Figure 11 compares the speedup of TDRAM to other
designs. In all workloads TDRAM outperforms Cascade Lake,
Alloy, BEAR, and NDC, providing a geo-mean speedup
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Fig. 11: System’s speedup normalized to Cascade Lake. TDRAM provides 1.20×, 1.23×, 1.13×, and 1.08× speedup w.r.t.
Cascade Lake, Alloy, BEAR, and NDC.
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Fig. 12: Speedup normalized to system without DRAM cache. On a geo-mean, Cascade Lake, Alloy, and BEAR cause 8%,
10%, and 2% slowdown. NDC and TDRAM cause speedup of 3% and 11%, respectively.

of 1.20×, 1.23×, 1.13×, and 1.08×, respectively. We also
evaluated the TDRAM without early tag probing which had
a performance similar to NDC, thus we are not separately
showing it in the figure. As discussed in §V-A, TDRAM
effectively reduces tag check latency and queueing delay. This
improvement positively impacts the hit and miss latency of the
DRAM cache and the miss penalty of LLC. Consequently, the
overall performance of the system is enhanced compared to
existing designs, as Figure 11 shows. The ideal cache provides
tag check results with zero latency, eliminating the need to
endure queueing delay and DRAM access latency for tag
checks, acting as a perfect Tags-in-SRAM cache. It sets a
performance upper-bound for caching, and Figure 11 shows
that TDRAM closely approaches this ideal, better than all the
prior designs.

Figure 12 compares the speedup of all the designs to a sys-
tem that has only a main memory (no DRAM cache). As the
figure shows, for applications with lower miss ratios, DRAM
caching can improve systems throughput. This improvement
decreases as the miss ratio increases due to the miss penalty of
DRAM cache that involves main memory access. Analyzing
the data, Intel’s Cascade Lake, Alloy, and BEAR caches cause
a geo-mean slowdown of 8%, 10%, and 2%, respectively. NDC
provides a geo-mean speedup of 1.03×. TDRAM increases the

geo-mean speedup to 1.11×, primarily due to its reduced hit
latency and miss penalty compared to all the other designs.

C. TDRAM’s Energy Improvement

Prior work deines bandwidth bloat factor as: total number
of bytes moved divided by total useful bytes moved [28].
Table IV shows the geo-mean bandwidth bloat across low
and high miss ratio workloads. The table also shows the
maximum reduction TDRAM achieves. TDRAM reduces the
bandwidth bloat by a geo-mean of 39.9%, 25.1%, and 19.85%
compared to Alloy, Cascade Lake, and BEAR, respectively.
NDC’s bandwidth bloat is similar to the TDRAM’s since they
both move the same amount of data for a demand.

TABLE IV: Bandwidth Bloat Factor

Design Low Miss Ratio High Miss Ratio
Cascade Lake 1.35 2.75
Alloy 1.68 3.43
BEAR 1.41 2.40
NDC 1.13 2.06
TDRAM 1.13 2.06

TDRAM Reductions
Design Low Miss Ratio High Miss Ratio Max
W.r.t. Cascade Lake 16.3% 25.1% 39.51%
W.r.t. Alloy 32.7% 39.9% 51.61%
W.r.t. BEAR 14.16% 19.85% 23.79%
W.r.t. NDC 0% 0% 0%
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Fig. 13: Relative energy consumption of TDRAM and BEAR, normalized to Cascade Lake. Lower is better. Alloy is not shown
as it is much higher than Cascade Lake. NDC is omitted as its relative energy consumption is similar to TDRAM.

To analyze the energy consumption, we developed an
HBM3 power model using HBM2 power data in [55] and
scaled it for HBM3 speeds and timings (Table III). Processor
interface power is calculated from our validated HBM3 PHY
design. Compared to a standard HBM3 DRAM, TDRAM’s
power is increased to account for on-die tag storage and
associated operations, and both DRAM cache and processor
interface power are increased for the additional signals and
HM buses and associated logic. Figure 13 shows the relative
energy consumption (power × runtime) of TDRAM and BEAR
caches, normalized to Cascade Lake as the baseline. We are
not showing Alloy’s energy consumption as it is much higher
than Cascade Lake. Moreover, the energy consumption of
NDC and TDRAM is comparable, as both systems move the
same amount of data, as shown in Table IV. We anticipate
a slight increase in partial energy consumption for NDC due
to its larger tag MATs and additional data column operations
for cases where data transfer is unnecessary (e.g., read-miss-
cleans), which TDRAM eliminates. These additional opera-
tions contribute negligibly to the total energy consumption,
which is primarily driven by the amount of data transferred–
identical in both designs. Thus, the overall relative energy
consumption of NDC and TDRAM remains the same.

On geo-mean, TDRAM’s energy savings compared to Cas-
cade Lake and BEAR is 21% and 12%, respectively. This
saving is primarily due to reducing bandwidth bloat in the
TDRAM’s protocol. Applications with more write-hits or
read/write miss-cleans (e.g., ft and is) show more energy
savings with TDRAM’s compared to Cascade Lake. Applica-
tions with more miss-cleans (e.g., ft, ua) show more energy
savings with TDRAM compared to BEAR. BEAR like Alloy
has an access granularity of 80B for every 64B demand,
which consumes more energy even on hits. As the bandwidth
bloat increases, more energy is consumed since more data is
transferred. TDRAM eliminates unnecessary data transfers in
its protocol, saving energy while, servicing the same number
of memory demands as the other designs.

TDRAM’s Power Change : To access both tag and
data banks in parallel, TDRAM activates all involved banks
simultaneously. On the other hand, TDRAM compares tags

in DRAM to selectively send data to the controller only
when needed, significantly reducing bandwidth bloat (Ta-
ble IV). Prior works have shown HBM2 spends 62.6% of
power in moving data between the DRAM core and the
controller [10]. This makes designs like Alloy and BEAR
more power-inefficient due to their 80B data transfer per 64B
memory demand. In contrast, TDRAM saves power system-
wide by streaming 64B data to the controller only when
necessary, based on in-DRAM tag comparison. Extra activates
in TDRAM increase power slightly, but it is small compared
to data transfer. TDRAM’s overall power savings compared
to Cascade Lake and BEAR are 7% and 5%, respectively.
In the DRAM itself, there will be higher power consumption
than normal DRAMs since more bits are accessed in parallel.
However, spare vias in the HBM package can be used for more
power delivery, and the increase in power should not cause
significant heat problems. As mentioned above, this increase
in the internal DRAM power consumption is much less than
what is saved by selective data streams on data bus.

D. Performance Impact of Predictors and Prefetchers
We designed TDRAM orthogonal to the prefetchers and

predictors, i.e., any existing or future prefetchers/predictors
can be used with TDRAM to further improve the performance.
We evaluated the impact of using a MAP-I [58] predictor
on DRAM cache performance. The results showed predic-
tors have a minor impact on overall performance, with an
overall speedup of 1.03-1.04× compared to caches without
predictors. However, predictors cannot guarantee a predicted
miss isn’t a hit, causing inefficiencies since the line’s state
(dirty or clean) is only known after reading the tags. For
writes, predictors must always read data to avoid overwriting
potential dirty lines. TDRAM in its ActWr protocol ensures
this by reading the dirty data (if any) into flush buffer, before
writing incoming data. For reads, predictors can accelerate
main memory accesses on misses but must read cache data
before cache fill to avoid overwriting dirty lines. TDRAM
with early tag probing accelerates main memory accesses on
read misses deterministically rather than through speculation.
Predictors can be detrimental to DRAM cache performance by
increasing bandwidth bloat through unnecessary data transfer.



In contrast, early tag probing in TDRAM only accesses tag
storage during unused slots in the HM and command buses,
minimizing timing impact and avoiding bandwidth bloat.

Our preliminary analysis shows incremental performance
gain from prefetchers as well. The reason is prefetchers
introduce interference with demand accesses and consume
excessive bandwidth. DRAM caches, due to their larger size
and higher latency compared to on-chip caches, are particu-
larly sensitive to resource utilization including bandwidth and
buffers. Depending on the prefetch granularity (page, block,
etc), it adds tail latency to critical demands response time
increasing the hit latency. Moreover, prefetchers can cause
unnecessary data movement if gaining low accuracy per appli-
cation, increasing bandwidth bloat and energy consumption.
All these aspects contribute to the incremental performance
improvement from prefetchers. Future work could explore
specialized predictors and prefetchers for DRAM caches.

E. Flush Buffer Size Sensitivity Analysis

We assessed the sensitivity to the flush buffer size with
8, 16, 32, and 64 entries. The results showed the flush
buffer consistently avoids becoming full, preventing TDRAM
stalls, except for lu in NPB-D with buffer size of 8. In this
case, TDRAM stalled only 13 times, resulting in negligible
performance overhead. Most applications rely on read-miss-
clean accesses to unload the flush buffer. Notably, lu and
bc highly utilized the refresh cycles for unloading. This data
confirms the effectiveness of TDRAM’s opportunistic behavior
in minimizing data transfer overhead. The flush buffer’s aver-
age occupancy was 5 entries, with a maximum of 12 entries.
Setting the buffer size to 16 prevents TDRAM stalls. Thus,
the overhead of flush buffer is minimal.

F. Set-Associative TDRAM

TDRAM applies equally well to direct-mapped and set-
associative caches. In Figure 4, if pairs of bank groups (e.g., 0
and 1, 2 and 3, etc.) form two ways of a set, tag comparisons
can be performed in parallel if each way has its own compara-
tor. A signal from the matching way is sent to the internal
control logic to select the proper column in the data mats.
Implementations without in-DRAM tag comparators send all
tags in the set to the controller, and the controller subsequently
sends a request for the proper column to the DRAM, incurring
extra latency and energy consumption [48].

Set-associativity helps applications with high miss conflicts.
However, our analysis showed the tested HPC workloads
have negligible miss conflicts on DRAM cache. Thus, they
did not gain significant performance improvement from set-
associativity compared to direct-mapped cache. Our results
show direct-mapped and 2,4,8,16 ways set-associative caches
have similar speedup (over a system with main memory only).

VI. RELATED WORK

Table I and §II-A provides a comparison of TDRAM with
prior work. Loh and Hill [48] proposed one of the earliest
block-based DRAM cache where tag and data access were

stored in the same row with a MissMap to avoid accessing the
DRAM cache on predicted misses. Alloy [58] reduces latency
by streaming data and tags together in a single burst. Fur-
thermore, they introduced a memory access predictor, which
incurred less overhead compared to the MissMap technique.
Retagger [25] uses tags in the controller to mitigate the DRAM
row buffer miss cost. RedCache [22] adapts at runtime to start
and stop caching for individual blocks. While these works
have explored different approaches for storing tags and data
in DRAM caches, they all require the tags to be moved to the
controller for tag comparison and checks to be performed.
R-Cache proposed to use RRAM memory for on-die tag
storage [23]. Due to longer latency of RRAM compared to
DRAM, it can extend the tag check latency, exacerbating the
hit and miss latencies of DRAM cache. In contrast, our work
modifies the DRAM microarchitecture to enable tag checks
to be performed inside the DRAM, thereby reducing the data
movement overhead and improving overall cache efficiency.

The Footprint Cache [42] and Unison Cache [41] blend
block and page-based designs to lower off-chip traffic. This
coarse-grain tracking leads to bandwidth waste and poor
utilization of cache capacity in contrast to block-based caches
like TDRAM. Several works [44], [45], [72] combine software
and hardware techniques for DRAM caching. Also, Hong et
al. proposed a DRAM cache specifically for GPUs working
with storage-class memories [38]. We envision potential soft-
ware/OS integration benefits for TDRAM, as well as GPU-
specific changes which are directions we plan to explore.

Stockdale et al. leverages HBM’s embedded logic die for
cache management [66] by enhancing the base HBM DRAM
layer with a cache result signal and reserving one pseudo-
channel for tags. The eTag DRAM cache uses eDRAM storage
on the processor die, with tag comparison preceding DRAM
cache access [69], but eTag cannot scale with increased off-
chip capacity as eDRAM size limits the data cache capacity.
Hameed et al. proposed a DRAM cache with a separate tag
and data storage that relies on a predictor and a Data-Absence-
Table [35]. These speculation-based designs are orthogonal to
TDRAM. TDRAM minimizes amplification, using the HM bus
for cache outcomes and tag transfers, and employs tag probing
to mitigate read miss impact. TDRAM puts tags and data on
each channel which scales with cache capacity.

A recent work has introduced NDC which similar to
TDRAM extends DRAM to store tags and performs tag checks
inside the DRAM [60]. while both TDRAM and NDC enable
HBM-like devices to be used as a cache, their nature is differ-
ent in the following ways. While TDRAM extends the existing
DRAM protocol and interface, NDC modifies the DRAM
sensing circuit, protocol, and interface. TDRAM builds on
existing fast DRAM for tag management (e.g., RLDRAM)
whereas NDC introduces a new CAM-like DRAM structure.
TDRAM keeps the data and metadata storage technology
intact, where NDC introduces changes in the structure of CAM
for tag matching and storage support.

Main differences in their protocols are as follows. In
TDRAM hit/miss status is determined during data bank ac-



tivation, thus enabling conditional RD/WR command to the
data bank according to the hit/miss status. For instance, in
case of a miss-clean for a read request, TDRAM does not
issue a RD command. While in NDC, the command is always
issued and hit/miss status is always determined during column
operation. In other words, TDRAM skips column operation if
not necessary which saves latency and energy consumption.
Besides, TDRAM uses idle states of the data bus (e.g., refresh
cycles and in read-miss-clean requests that do not send back
data) to actively empty the flush buffer. Whereas in NDC, they
require a specific new command (RES) to empty their victim
buffer. This mandates a bubble on the data bus for NDC since
the write request data and the data from the victim buffer
have different directions on the data bus. In addition, TDRAM
proposes the early probing that deterministically identifies the
hit/miss status of a request with zero overhead, since it is
performed in otherwise unused slots of buses. NDC, by tying
the hit/miss indication to the RD/WR commands, is unable to
leverage this technique. Our results show that early tag probing
can improve tag check latency up-to 70% on large workloads
with high miss rate.

Finally, by having a HM bus, TDRAM does not need an
extra 2 beats (1 cycle) to send the tag from DRAM to the
controller. Thus, TDRAM saves 1 cycle every request and the
power to transmit the tag on hits and miss cleans (the common
cases). We provide a detailed cost breakdown of the extra pins
in the table in Figure 4A. Note that NDC provides the overhead
for a single channel whereas we show the overhead for a whole
64 GiB stack. NDCs single-bit bus is similar to [66]. Also, the
evaluation of TDRAM focuses on large applications (up to
80 GiB footprint) and realistic-sized DRAM caches (8 GiB),
whereas NDC uses much smaller workloads (inputs not given)
and a smaller cache (1 GiB).

Another group of prior works, TL-DRAM [46], LISA [26],
CROW [36], FIGARO [68], propose in-DRAM caching where
the DRAM is heterogeneous by having a fast (or near)
segment (or row) and a slow (or far) segment (or row) and
the fast subcomponent caches for the slow subcomponent
internally. These work fundamentally differ from TDRAM
since TDRAM caches for an external independent backing
store and the fast part only serves for tag and metadata storage.

CONCLUSION

In this paper we introduce TDRAM, a tag-enhanced energy-
efficient DRAM for caching, to optimize caches hit and
miss latencies. We showed TDRAM’s 1.2× speedup and 21%
energy saving over commercial designs. These improvements
highlight TDRAMs potential to enhance memory performance
and energy efficiency, making it a promising solution for mod-
ern computing systems that demand higher performance and
reduced energy consumption. Further exploration of TDRAMs
integration into existing memory hierarchies could unlock
benefits for diverse architectures.
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