
AutoTM: Automatic Tensor Movement in Heterogeneous
Memory Systems using Integer Linear Programming

Mark Hildebrand1,
Jawad Khan2, Sanjeev Trika2,

Jason Lowe-Power1, Venkatesh Akella1

1 University of California, Davis
2 Intel Corporation

https://github.com/darchr/AutoTM

March 12, 2020

1/29

https://github.com/darchr/AutoTM


Executive Summary

Problem
Automatic two-level memory management for Deep Neural Networks

Idea
• Profile Guided Optimization

• Model as an Integer Linear Program (ILP)

Results
• Replace 50-80% DRAM with NVDIMMs with geometric mean 27.1% performance

loss.

• 3x better performance than real hardware cache.

2/29



Outline

Background

AutoTM
Profiling
ILP Modeling

Results

Wrap Up

3/29



Why Deep Neural Networks

to train large models on a single machine?
Can we use multiple levels of memory

Image: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

4/29

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/


Why Deep Neural Networks

to train large models on a single machine?
Can we use multiple levels of memory

Image: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

4/29

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/


Why Deep Neural Networks

to train large models on a single machine?
Can we use multiple levels of memory

Image: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

4/29

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/


Heterogeneous Memory Systems

• Two types of memory.

• Same memory controller.

• Both are byte addressable.

• NVDIMMs for high capacity and low cost

Challenges

• All tensors in NVDIMMs memory is too slow.

• DRAM as a cache for NVDIMMs also too slow.

• Intelligent memory management required.

NVDIMM Style

5/29



Heterogeneous Memory Systems

• Two types of memory.

• Same memory controller.

• Both are byte addressable.

• NVDIMMs for high capacity and low cost

Challenges

• All tensors in NVDIMMs memory is too slow.

• DRAM as a cache for NVDIMMs also too slow.

• Intelligent memory management required.

NVDIMM Style

5/29



Outline

Background

AutoTM
Profiling
ILP Modeling

Results

Wrap Up

6/29



AutoTM

Goal
Minimize execution time

• Arbitrary computation graph

• Size constraint on fast memory

How
• Place tensors in fast or slow memory.

• Optimal tensor movement

Strategy

• Profile kernel performance.

• Model tensor assignment as ILP.

7/29



AutoTM

Goal
Minimize execution time

• Arbitrary computation graph

• Size constraint on fast memory

How
• Place tensors in fast or slow memory.

• Optimal tensor movement

Strategy

• Profile kernel performance.

• Model tensor assignment as ILP.

7/29



AutoTM

Goal
Minimize execution time

• Arbitrary computation graph

• Size constraint on fast memory

How
• Place tensors in fast or slow memory.

• Optimal tensor movement

Strategy

• Profile kernel performance.

• Model tensor assignment as ILP.

7/29



Kernel Profiling

Profile performance of kernels for all tensor
IO locations.

Kernel IO Tensor Locations

K2

T1 T2 T3

DRAM DRAM DRAM
DRAM DRAM PMM
DRAM PMM DRAM
DRAM PMM PMM
PMM DRAM DRAM
PMM DRAM PMM
PMM PMM DRAM
PMM PMM PMM

Table: Profile space for kernel K2.

DRAM
DRAM
DRAM

DRAM
DRAM
PMM

DRAM
PMM
DRAM

DRAM
PMM
PMM

PMM
DRAM
DRAM

PMM
DRAM
PMM

PMM
PMM
DRAM

PMM
PMM
PMM

0

1

2

Data In:
Weight:

Data Out:

P
er
fo
rm

a
n
ce

re
la
ti
ve

to
a
ll
IO

in
D
R
A
M

8/29



Kernel Profiling

Profile performance of kernels for all tensor
IO locations.

Kernel IO Tensor Locations

K2

T1 T2 T3

DRAM DRAM DRAM
DRAM DRAM PMM
DRAM PMM DRAM
DRAM PMM PMM
PMM DRAM DRAM
PMM DRAM PMM
PMM PMM DRAM
PMM PMM PMM

Table: Profile space for kernel K2.

DRAM
DRAM
DRAM

DRAM
DRAM
PMM

DRAM
PMM
DRAM

DRAM
PMM
PMM

PMM
DRAM
DRAM

PMM
DRAM
PMM

PMM
PMM
DRAM

PMM
PMM
PMM

0

1

2

Data In:
Weight:

Data Out:

P
er
fo
rm

an
ce

re
la
ti
ve

to
al
l
IO

in
D
R
A
M

8/29



Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.

9/29



Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.

10/29



Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.

11/29



Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.

12/29



Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.

13/29



Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.

14/29



Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.

15/29



ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk +
∑
t∈T

Mt

16/29



ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk +
∑
t∈T

Mt

16/29



ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk︸ ︷︷ ︸
Kernel

Execution
Time

+
∑
t∈T

Mt

K : Set of Kernels

ρk : Run time of kernel k

Example
Run time of kernel k2

17/29



ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk︸ ︷︷ ︸
Kernel

Execution
Time

+
∑
t∈T

Mt

K : Set of Kernels

ρk : Run time of kernel k

Example
Run time of kernel k2

17/29



ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk︸ ︷︷ ︸
Kernel

Execution
Time

+
∑
t∈T

Mt︸ ︷︷ ︸
Tensor

Movement
Time

T : Set of Tensors

Mt : Time moving tensor t

Example
Time moving tensor t1

18/29



ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk︸ ︷︷ ︸
Kernel

Execution
Time

+
∑
t∈T

Mt︸ ︷︷ ︸
Tensor

Movement
Time

T : Set of Tensors

Mt : Time moving tensor t

Example
Time moving tensor t1

18/29



ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk︸ ︷︷ ︸
Kernel

Execution
Time

+
∑
t∈T

Mt︸ ︷︷ ︸
Tensor

Movement
Time

Constraints
Limit DRAM at each
kernel∑
t∈L(k)

‖t‖IDRAM
t,k ≤ Limit ∀k

19/29



Variations of AutoTM

Name Description
PMM

System
GPU

System

Static Tensor’s can’t move 3 7

Synchronous Tensor’s move but block
computation

3 3

Asynchronous Tensor movement con-
current with computa-
tion

l 3

20/29



Outline

Background

AutoTM
Profiling
ILP Modeling

Results

Wrap Up

21/29



Experiments!

Software

• Modified the ngraph1 compiler.

• Julia’s JuMP2 package for ILP
modeling.

• Gurobi3 as the ILP solver.

Hardware

• 1.5 TB OptaneTM DC PMM

• 384 GiB DRAM

Workloads −−−−−−−−−−−−−−→

Conventional Batchsize Memory (GB)

Inception v4 1024 111
Vgg 19 2048 143

Resnet 200 512 132
DenseNet 264 512 115

Large Batchsize Memory (GB)

Inception v4 6144 659
Vgg 416 128 658

Resnet 200 2560 651
DenseNet 264 3072 688

1https://github.com/NervanaSystems/ngraph
2https://github.com/JuliaOpt/JuMP.jl
3gurobi.com

22/29



Experiments!

Software

• Modified the ngraph1 compiler.

• Julia’s JuMP2 package for ILP
modeling.

• Gurobi3 as the ILP solver.

Hardware

• 1.5 TB OptaneTM DC PMM

• 384 GiB DRAM

Workloads −−−−−−−−−−−−−−→

Conventional Batchsize Memory (GB)

Inception v4 1024 111
Vgg 19 2048 143

Resnet 200 512 132
DenseNet 264 512 115

Large Batchsize Memory (GB)

Inception v4 6144 659
Vgg 416 128 658

Resnet 200 2560 651
DenseNet 264 3072 688

1https://github.com/NervanaSystems/ngraph
2https://github.com/JuliaOpt/JuMP.jl
3gurobi.com

22/29



Experiments!

Software

• Modified the ngraph1 compiler.

• Julia’s JuMP2 package for ILP
modeling.

• Gurobi3 as the ILP solver.

Hardware

• 1.5 TB OptaneTM DC PMM

• 384 GiB DRAM

Workloads −−−−−−−−−−−−−−→

Conventional Batchsize Memory (GB)

Inception v4 1024 111
Vgg 19 2048 143

Resnet 200 512 132
DenseNet 264 512 115

Large Batchsize Memory (GB)

Inception v4 6144 659
Vgg 416 128 658

Resnet 200 2560 651
DenseNet 264 3072 688

1https://github.com/NervanaSystems/ngraph
2https://github.com/JuliaOpt/JuMP.jl
3gurobi.com

22/29



Scaling Performance - Inception V4

Performance of Inception v4 - Batchsize 1024

0 20 40 60 80 100 120

1

2

3

4

5

Dram Limit (GB)
Lower is Better

Slowdown
Lower is Better

synchronous

23/29



Scaling Performance - Inception V4

Performance of Inception v4 - Batchsize 1024

0 20 40 60 80 100 120

1

2

3

4

5

Dram Limit (GB)
Lower is Better

Slowdown
Lower is Better

synchronous

◦ Just using PMM is too slow.

24/29



Scaling Performance - Inception V4

Performance of Inception v4 - Batchsize 1024

0 20 40 60 80 100 120

1

2

3

4

5

Dram Limit (GB)
Lower is Better

Slowdown
Lower is Better

synchronous

◦ Just using PMM is too slow.
24/29



Scaling Performance - Inception V4

Performance of Inception v4 - Batchsize 1024

0 20 40 60 80 100 120

1

2

3

4

5

Dram Limit (GB)
Lower is Better

Slowdown
Lower is Better

synchronous

◦ Best performance when working-set fits in memory.

25/29



Scaling Performance - Inception V4

Performance of Inception v4 - Batchsize 1024

0 20 40 60 80 100 120

1

2

3

4

5

Dram Limit (GB)
Lower is Better

Slowdown
Lower is Better

synchronous

◦ Best performance when working-set fits in memory.
25/29



Comparison Against 2LM

Vgg416
(320)

Incepti
on v4 (6144)

Resnet
200 (2560)

DenseNe
t 264 (3072)

0

1

2

3

Speedup over 2LM
Higher is Better

static-AutoTM sync-AutoTM

2LM DRAM Cache

26/29



Comparison Against 2LM

Vgg416
(320)

Incepti
on v4 (6144)

Resnet
200 (2560)

DenseNe
t 264 (3072)

0

1

2

3

Speedup over 2LM
Higher is Better

static-AutoTM sync-AutoTM

2LM DRAM Cache

26/29



Comparison Against 2LM

Vgg416
(320)

Incepti
on v4 (6144)

Resnet
200 (2560)

DenseNe
t 264 (3072)

0

1

2

3

Speedup over 2LM
Higher is Better

static-AutoTM sync-AutoTM

2LM DRAM Cache • Avoid Dirty Writebacks

• Lower Memory Contention

26/29



Comparison Against 2LM

Vgg416
(320)

Incepti
on v4 (6144)

Resnet
200 (2560)

DenseNe
t 264 (3072)

0

1

2

3

Speedup over 2LM
Higher is Better

static-AutoTM sync-AutoTM

2LM DRAM Cache
Software management
outperforms hardware
management by up to 3x.

26/29



Outline

Background

AutoTM
Profiling
ILP Modeling

Results

Wrap Up

27/29



Limitations

• Static computation graphs.

• Kernel profiling overhead.

• ILP solution times.

• ILP solution may be hard to interpret.

Vgg19 Inception v4 Resnet200 DenseNet 264

101

102

103

ILP Solution Time (s)
Logarithmic

static-AutoTM sync-AutoTM

28/29



Limitations

• Static computation graphs.

• Kernel profiling overhead.

• ILP solution times.

• ILP solution may be hard to interpret.

Vgg19 Inception v4 Resnet200 DenseNet 264

101

102

103

ILP Solution Time (s)
Logarithmic

static-AutoTM sync-AutoTM

28/29



Conclusion

AutoTM: A technique for managing tensors in heterogeneous memory systems.

• Profiling for Kernel Performance.

• Use ILP to optimally assign tensor location and movement.

• Three formulations: Static, Synchronous, Asynchronous.

We show

• Reduce DRAM requirement.

• Significant performance improvement over hardware solutions.

Code Available: https://github.com/darchr/AutoTM

29/29

https://github.com/darchr/AutoTM


Common Questions

30/29



Asynchronous Movement on PMMs

• Interference between DRAM and PMM.

• Low bandwidth and difficulty of DMA.

• Performance of kernels greatly impacted due to copy kernels.

31/29



GPU

1
2
3
4
5
6
7
8
9
10

64 128 256 32 64 128 32 64 128 64 128
Inception v4 Resnet200 DenseNet 264 Vgg19

S
p
ee
d
u
p
ov
er

C
u
d
aM

al
lo
cM

an
ag

ed
synchronous asynchronous oracle

32/29



RNNs - more complex models

• AutoTM is limited to static computation graphs.
• RNNs have dynamic behavior (i.e. unrolling based on sequence length).
• RNNs can be implemented statically.
• Key ideas from AutoTM can be used for dynamic workloads.

0 20 40 60 80 100 120

0

0.5

1

DRAM Limit (GB)

P
er
ce
n
t
of

K
er
n
el

IO
in

D
R
A
M

static: input tensors
static: output tensors

synchronous: input tensors
synchronous: output tensors

33/29



Concluding Conclusion

AutoTM: A technique for managing tensors in heterogeneous memory systems.

• Profiling for Kernel Performance.

• Use ILP to optimally assign tensor location and movement.

• Three formulations: Static, Synchronous, Asynchronous.

We show

• Reduce DRAM requirement.

• Significant performance improvement over hardware solutions.

Code Available: https://github.com/darchr/AutoTM

34/29

https://github.com/darchr/AutoTM

	Background
	AutoTM
	Profiling
	ILP Modeling

	Results
	Wrap Up

