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Executive Summary

Problem
Automatic two-level memory management for Deep Neural Networks

Idea
• Profile Guided Optimization

• Model as an Integer Linear Program (ILP)

Results
• Replace 50-80% DRAM with NVDIMMs with geometric mean 27.1% performance

loss.

• 3x better performance than real hardware cache.
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Why Deep Neural Networks

to train large models on a single machine?
Can we use multiple levels of memory

Image: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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Heterogeneous Memory Systems

• Two types of memory.

• Same memory controller.

• Both are byte addressable.

• NVDIMMs for high capacity and low cost

Challenges

• All tensors in NVDIMMs memory is too slow.

• DRAM as a cache for NVDIMMs also too slow.

• Intelligent memory management required.

NVDIMM Style
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AutoTM

Goal
Minimize execution time

• Arbitrary computation graph

• Size constraint on fast memory

How
• Place tensors in fast or slow memory.

• Optimal tensor movement

Strategy

• Profile kernel performance.

• Model tensor assignment as ILP.
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Kernel Profiling

Profile performance of kernels for all tensor
IO locations.

Kernel IO Tensor Locations

K2

T1 T2 T3

DRAM DRAM DRAM
DRAM DRAM PMM
DRAM PMM DRAM
DRAM PMM PMM
PMM DRAM DRAM
PMM DRAM PMM
PMM PMM DRAM
PMM PMM PMM
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Tensor Lifetime Flow Network

Path of flow through the graph describes where a tensor’s memory location throughout
its lifetime.
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ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk +
∑
t∈T

Mt
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ILP Modeling

Objective Function

Computation time

min
∑
k∈K

ρk︸ ︷︷ ︸
Kernel

Execution
Time

+
∑
t∈T

Mt︸ ︷︷ ︸
Tensor

Movement
Time

Constraints
Limit DRAM at each
kernel∑
t∈L(k)

‖t‖IDRAM
t,k ≤ Limit ∀k
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Variations of AutoTM

Name Description
PMM

System
GPU

System

Static Tensor’s can’t move 3 7

Synchronous Tensor’s move but block
computation

3 3

Asynchronous Tensor movement con-
current with computa-
tion

l 3
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Experiments!

Software

• Modified the ngraph1 compiler.

• Julia’s JuMP2 package for ILP
modeling.

• Gurobi3 as the ILP solver.

Hardware

• 1.5 TB OptaneTM DC PMM

• 384 GiB DRAM

Workloads −−−−−−−−−−−−−−→

Conventional Batchsize Memory (GB)

Inception v4 1024 111
Vgg 19 2048 143

Resnet 200 512 132
DenseNet 264 512 115

Large Batchsize Memory (GB)

Inception v4 6144 659
Vgg 416 128 658

Resnet 200 2560 651
DenseNet 264 3072 688

1https://github.com/NervanaSystems/ngraph
2https://github.com/JuliaOpt/JuMP.jl
3gurobi.com
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Scaling Performance - Inception V4

Performance of Inception v4 - Batchsize 1024
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Comparison Against 2LM
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management by up to 3x.
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Limitations

• Static computation graphs.

• Kernel profiling overhead.

• ILP solution times.

• ILP solution may be hard to interpret.

Vgg19 Inception v4 Resnet200 DenseNet 264
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Conclusion

AutoTM: A technique for managing tensors in heterogeneous memory systems.

• Profiling for Kernel Performance.

• Use ILP to optimally assign tensor location and movement.

• Three formulations: Static, Synchronous, Asynchronous.

We show

• Reduce DRAM requirement.

• Significant performance improvement over hardware solutions.

Code Available: https://github.com/darchr/AutoTM
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Common Questions
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Asynchronous Movement on PMMs

• Interference between DRAM and PMM.

• Low bandwidth and difficulty of DMA.

• Performance of kernels greatly impacted due to copy kernels.
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RNNs - more complex models

• AutoTM is limited to static computation graphs.
• RNNs have dynamic behavior (i.e. unrolling based on sequence length).
• RNNs can be implemented statically.
• Key ideas from AutoTM can be used for dynamic workloads.
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Concluding Conclusion

AutoTM: A technique for managing tensors in heterogeneous memory systems.

• Profiling for Kernel Performance.

• Use ILP to optimally assign tensor location and movement.

• Three formulations: Static, Synchronous, Asynchronous.

We show

• Reduce DRAM requirement.

• Significant performance improvement over hardware solutions.

Code Available: https://github.com/darchr/AutoTM
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