AutoTM: Automatic Tensor Movement in
Heterogeneous Memory Systems using Integer Linear
Programming

Mark Hildebrand

University of California, Davis

mhildebrand@ucdavis.edu

Jason Lowe-Power
University of California, Davis
jlowepower@ucdavis.edu

Abstract

Memory capacity is a key bottleneck for training large scale
neural networks. Intel® Optane™ DC PMM (persistent mem-
ory modules) which are available as NVDIMMs are a dis-
ruptive technology that promises significantly higher read
bandwidth than traditional SSDs at a lower cost per bit than
traditional DRAM. In this work we show how to take advan-
tage of this new memory technology to minimize the amount
of DRAM required without compromising performance sig-
nificantly. Specifically, we take advantage of the static nature
of the underlying computational graphs in deep neural net-
work applications to develop a profile guided optimization
based on Integer Linear Programming (ILP) called AutoTM
to optimally assign and move live tensors to either DRAM
or NVDIMMs. Our approach can replace 50% to 80% of a sys-
tem’s DRAM with PMM while only losing a geometric mean
27.7% performance. This is a significant improvement over
first-touch NUMA, which loses 71.9% of performance. The
proposed ILP based synchronous scheduling technique also
provides 2x performance over using DRAM as a hardware-
controlled cache for very large networks.

CCS Concepts + Hardware — Analysis and design of
emerging devices and systems; Memory and dense storage;
« Computing methodologies — Machine learning.

ACM Reference Format:
Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power,
and Venkatesh Akella. 2020. AutoTM: Automatic Tensor Movement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS °20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378465

Jawad Khan
Intel Corporation
jawad.b.khan@intel.com

Sanjeev Trika
Intel Corporation
sanjeev.trika@intel.com

Venkatesh Akella
University of California, Davis
akella@ucdavis.edu

in Heterogeneous Memory Systems using Integer Linear Program-
ming . In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20), March 16-20, 2020, Lausanne, Switzerland.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3373376.
3378465

1 Introduction

Deep Neural Networks (DNNs) have been dramatically suc-
cessful over the past decade across many domains includ-
ing computer vision [29], machine translation and language
modeling [40], recommendation systems [30], speech [46]
and image synthesis [47], and real-time strategy game con-
trol [43]. This success has in turn led practitioners to pursue
larger, more expressive models. Today, state of the art models
in language modeling and translation have 100s of billions
of parameters [38] which requires 100s of GB of active work-
ing memory for training. For instance, large models such
as BigGAN [6] found significant benefits from increasing
both model size and training batch size, and Facebook’s re-
cent DLRM recommendation system [30] contains orders
of magnitude more parameters than conventional networks.
Additionally, to reach beyond human-level accuracy these
models are expected to grow even larger with possibly 100x
more parameters [22]. The large memory footprints of these
models limits training to systems with large amounts of
DRAM which incur high costs.

As the memory capacity demands of DNN training are
growing, new high density memory devices are finally be-
ing produced. Specifically, Intel® Optane™ DC Persistent
Memory Modules (PMM) [15, 25] can now be purchased and
are up to 2.1X lower price per capacity than DRAM. These
devices are on the main memory bus, allowing applications
direct access via load and store instructions and can be used
as working memory. Thus, in this paper we ask the question
“what are the design tradeoffs of using PMM in training large
DNN models, and more specifically, can PMM be used as a
DRAM replacement when training for large DNN models?”

https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3373376.3378465

o System with System with 128 GB PMM System with
= 160 GB PMM and 32 GB DRAM 160 GB DRAM
m‘ (lowest cost) (mid cost) (highest cost)
5
& 80
@«
=
S
% 40
3
=

0

All PMM NUMA AutoTM All DRAM

Figure 1. Performance of Inception v4. Batch size of 1472.

Figure 1 shows the training performance for three differ-
ent memory systems: an all PMM system (lowest cost), an
all DRAM system (highest cost), and a heterogeneous sys-
tem (moderate cost). The all PMM bar shows that naively
replacing DRAM with PMM results in poor performance
(about 5% slowdown) for training large DNN models. The
first-touch NUMA [27] bar shows that current system sup-
port for heterogeneous memory is lacking, providing only
a small benefit over the all PMM case. However, AutoTM
provides 3.7x speedup over the PMM case and is within 20%
of the all DRAM system. Thus, we find that a small fraction
of DRAM reduces the performance gap between PMM and
DRAM, but only if we use smart data movement.

Use of heterogeneous memory to reduce DRAM has been
studied in the past. Facebook has used SSDs to reduce the
DRAM footprint of databases [13]. Bandana [14] uses SSD
based persistent memory to store deep learning embedding
tables [10] with DRAM as a small software cache. In the
context of machine learning, vDNN [36], moDNN (8], and
SuperNeurons [44] develope system-specific heuristics to
tackle heterogeneous memory management between the
GPU and CPU to overcome the low memory capacity of
GPUs. Furthermore, future HPC systems will be increasingly
heterogeneous with DRAM, PMM, and HBM [35], so we
need a solution that is general and automatic.

In this paper we introduce AutoTM—a framework to auto-
matically move DNN training data (tensors) between hetero-
geneous memory devices. AutoTM enables training models
with 100s of billions of parameters and/or with large batch
sizes efficiently on a single machine. We exploit the static
nature of DNN training computation graphs to develop an
Integer Linear Programming (ILP) [37] formulation which
takes a profile driven approach to automatically optimize
the location and movement of intermediate tensors between
DRAM and PMM given a DRAM capacity constraint.

We evaluate the effectiveness of AutoTM on a real sys-
tem with Optane PMM by implementing our approach in
the nGraph compiler [11]. Our experiments show that naive
use of PMM is not effective, but intelligent use of PMM and
DRAM is required. Furthermore, using initial public pric-
ing information, we evaluate the cost-performance benefits
DRAM-PMM based systems. We show that ratios of 8 : 1 or
4 : 1 of PMM to DRAM can be more cost effective than only
DRAM or only PMM.

D Producer of a tensor D Use (read) of a tensor

D Last use of a tensor

Figure 2. A simple example of a computation graph. The k nodes
are the compute kernels in the graph and t edges (tensors) show
the data dependency between kernels. Intermediate tensors have
a finite live range that can be exploited to reduce the memory
footprint of the computation graph.

We also compare our approach to the existing hardware
DRAM cache implemented in current Intel platforms [25]
and find AutoTM offers up to 2X performance improvement
over hardware-managed caching.

Finally, we demonstrate that AutoTM can be further gen-
eralized beyond PMM-DRAM heterogeneity by applying
AutoTM to CPU-GPU systems. The approach taken by Au-
toTM uses minimal problem specific heuristics and is thus
a general approach toward memory management for many
different heterogeneous systems.

The paper is organized as follows. In Section 2 we present
a quick overview of training deep neural networks and Intel’s
Optane DC PMM. In Section 3 we will present the details of
AutoTM and in Section 4 we will describe implementation
details, followed by our evaluation methodology in Section 5,
and the main results in Section 6. We will present extensions
to AutoTM in Section 7 and conclude with related work and
directions for future work.

2 Background
2.1 Deep Learning Training

Deep neural networks (DNNs) are often trained using a back-
ward propagation algorithm [28] and an optimizer such as
stochastic gradient descent. Popular deep learning frame-
works such as Tensorflow [1] and nGraph [11] implement
DNNs as a computation graph where each vertex or node in
the computation graph represent some computational ker-
nel. Common kernels include convolutions (CONV), pool-
ing (POOL), matrix multiplication, and recurrent cells such
as LSTM or GRU. Each kernel has its own characteristics
such as number of inputs, number of outputs, computation
time, and computational complexity. Directed edges in the
computation graph between kernels denote data or control
dependencies between kernels. An edge representing a data
dependency is associated with a tensor, which we consider
to be a contiguous region of memory with a known size.

120 F 7
100 - 2
= 80| | |-e—DRAM Read
o —m- DRAM Write
£ 60l | —eo— PMM Read
£ —m- PMM Write
T) | |-=-PMM — DRAM
3 —a—DRAM — PMM
20 2
0 |- -
| | | |

Il Il
0 5 10 15 20 25
Number of Threads

Figure 3. Read and write bandwidths between DRAM and PMM.
All operations were performed using AVX512 load and stores.
Copies between DRAM and PMM were done using streaming load
and store intrinsics.

to all IO in DRAM
— [\

Performance relative

[N

1
DRAM DRAM PMM PMM
DRAM PMM DRAM PMM

Figure 4. Execution time of a CONV kernel with input (upper label)
and output (lower label) feature maps varied between DRAM and
PMM. The performance of the kernel is largely unaffected by the
location of the output feature map. The CONV kernel had a filter
size (3, 3, 128, 128) and a input feature map size of (112, 112, 128, 128)
and was executed using 24 threads.

Figure 2 shows a simple example computation graph with
5 kernels and 3 tensors. Nodes in the graph are compute
kernels, each with zero or more inputs and outputs. The
inputs and outputs of a kernel are immutable tensors. Each
tensor is annotated with its producing kernel, each user of
the tensor, and the last user of the tensor. After its last use, a
tensor’s memory may be freed for future tensors.

We focus on the case where the computation graph de-
scribing the training iteration is static. That is, the compu-
tation graph contains no data-dependent control behavior
and the sizes of all intermediate data is known statically at
compile time. While many DNN graphs can be expressed stat-
ically, there are some networks that exhibit data-dependent
behavior [38]. We leave extending AutoTM to dynamic com-
putation graphs as future work.

2.2 Intel Optane DC PMM

3D XPoint is a resistive memory technology developed by In-
tel [19] that was initially introduced in the form a SSD called
Optane SSD. Recently, this technology as been made avail-
able in the form of a standard byte-addressable DDR4 DIMM
on the CPU memory bus, just like DRAM DIMMs [25] with

the new Cascade lake based chipsets and is called Optane
DC PMM (different from Optane SSD). Optane DC PMMs
are higher capacity than DRAM modules with up to 512 GB
per module available today.

There are two operating modes for Optane DC PMM. In 2
Level Mode (2LM or cached) PMM act as system memory
with DRAM as a direct mapped cache. This operating mode
allows for transparent use of the PMM at the overhead of
maintaining a DRAM cache. App Direct Mode allows users
manage the PMM directly. The PMM are mounted on a sys-
tem as direct access file systems. Files on the PMM devices
are then memory mapped into an application. When using a
direct access aware file system, loads and stores to addresses
in this memory mapped file go directly to the underlying
PMM. Note that in App Direct mode, the total available mem-
ory is the sum of DRAM and PMM while in 2LM only the
PMM capacity is counted. In this work, we focus on using the
PMM in App Direct mode, and make comparisons between
our optimized data movement and 2LM.

Figure 3 shows the read, write, and copy bandwidth of
DRAM and PMM on our test system with six interleaved
128 GB PMMs. The read, write, and copy operations were
implemented by splitting a region of memory into contigu-
ous blocks and assigning a thread to each chunk. AVX-512
streaming loads and stores were used to implement the copy
operation as they provide significantly higher throughput
between DRAM and PMM.

From Figure 3, we make the following observations about
PMM: bandwidth is significantly lower than DRAM, read
bandwidth scales with the number of threads, write band-
width peaks at a low number of threads and diminishes with
a higher number of threads, copy bandwidth from DRAM to
PMM scales with the number of threads, copy bandwidth is
chiefly limited by PMM write bandwidth, and there is sig-
nificant read/write asymmetry. These findings agree with
the performance evaluation of Optane PMM by other re-
searchers [25].

The read/write asymmetry has implications on the per-
formance of kernels with inputs and outputs in PMM or
DRAM. Figure 4 demonstrates the performance impact on
a single CONV kernel. We observe that when the input to
the CONV kernel is in PMM and the output is in DRAM, the
performance of the kernel is comparable to when both input
and output are in DRAM. However, in the cases where the
output is in PMM, the kernel runs over two times slower.
Any system seeking an optimal runtime with a memory con-
straint must take these relative timings into consideration
when making decision on where to assign data. In the next
section, we will describe the details of AutoTM and how it
manages these performance characteristics.

h

1)
DNN -/ ; ngraph ngraph : /
/Model optimizer backend Code/

Figure 5. System Overview.

Profile Kernel Memory DRAM
Cache Profiling I_) Optimizer Budget,

3 AutoTM

An overview of the proposed framework is shown in Fig-
ure 5. A DNN model is given to nGraph, which optimizes the
network DAG according to the selected backend (e.g. CPU,
GPU etc.). As part of the compilation process, our system
inspects the nGraph DAG data structure to extract (1) the
order and types nodes in the graph, (2) the tensors produced
and consumed by each node, and (3) the specific kernels
chosen by nGraph.

We then perform profiling on every kernel in the compu-
tation graph by varying its inputs and outputs between the
different memory pools (i.e., DRAM or PMM) and recording
the execution time of the kernel in each configuration. Since
this step is potentially time consuming and DNNs typically
contain many identical kernels, we keep a software cache
of profiled kernels. By keeping a profile cache, profiling for
a given DNN only needs to be performed once. Profiling
and DAG information is then fed into a Memory Optimizer
(described in Section 3.1) along with a DRAM capacity con-
straint, that mutates the nGraph data structure with the
tensor assignments and data movement nodes.

A user of this system only needs a nGraph function, which
is a collection of “Node” and “Tensor” data structures describ-
ing computations and data flow of the compute graph. These
functions can be created by using one of the nGraph front
ends, or directly using C++. Profiling, optimization, and code
generation all happen as part of the nGraph compilation
process and is transparent to the user.

In the rest of this section, we first give a high level in-
troduction to the memory optimizer. Then we present the
details of the optimizer’s underlying ILP formulation.

3.1 Memory Optimizer

The goal of the Memory Optimizer is to minimize execution
time by optimizing intermediate tensor movement and place-
ment. The inputs to the optimizer are (1) the types of kernels
in the computation graph in topological order, (2) the set
of all valid tensor input/output locations for each kernel as
well as profiled execution time for each configuration, (3) the
sizes of all intermediate tensors, as well as their producers,
users, and final users, (4) synchronous copy bandwidths be-
tween DRAM and PMM, and (5) a DRAM limit. The output
of the optimizer describes the location and date movement
schedules for all intermediate tensors that will minimize the
global execution time of the graph.

Since the Memory Optimizer is implemented as an ILP, we
need to model tensor location and movement using integer

or binary variables and constraints [32]. For each tensor ¢,
we create a separate network flow graph G; = (V;, &;) that
traces the tensor’s location during its lifetime. Examples of
such graphs are given in Figure 6a and 6b. The structure of
these graphs allows us to customize the semantics of possible
tensor locations and movements.

Using this graph structure, we investigate two separate for-
mulations, static and synchronous. The static formulation (Fig-
ure 6a) allows no tensor movement between memory pools.
A tensor is assigned to either DRAM or PMM and remains
there through its lifetime. The synchronous formulation (Fig-
ure 6b) allows tensors to be moved between memory pools
but blocks program execution to perform this movement. We
further generalize the ILP formulation to an asynchronous
formulation that allows overlap between computation and
data movement in Section 7.

Network flow constraints [16] are placed on each tensor
flow graph G, so that flow out of the source vertex is 1,
flow into the sink vertex is 1, and flow is conserved for
each intermediate node. The solution to this network flow
describes the movement of the tensor. For example, the bold
path in Figure 6b implies the following schedule for tensor
t1: (1) created by kernel k; in DRAM, (2) remains in DRAM
until the execution of kernel k;, (3) after k;, synchronously
moved t; into PMM, (4) prefetch t; into DRAM right before
k4, (5) move t; out of DRAM after ky, (6) tensor ¢; is in PMM
for the execution of kernel ks, (7) after ks, tensor #; is no
longer needed and can be freed from all memory pools.

3.2 Objective Function

We wish to minimize the execution time of the computation
graph under a DRAM constraint. In our framework, compu-
tation kernels are executed sequentially. Therefore, in the
static formulation where there is no tensor movement, the
objective function (expected execution time) is

min Z Pk (1)

where K is the set of all kernels k in the computation graph
and py is the expected execution time for kernel k. Note
that py depends on the locations input and output tensor for
kernel k. The selection of input and output tensor locations
is not trivial because of dependencies between kernels. For
example, if tensor t3 in Figure 2 is assigned to PMM, then
kernel k, must produce #; into PMM and kernels k3 and kq4
must reference t3 in PMM, which has a performance impact.
Given the lower performance of PMM relative to DRAM,
the cost of moving a tensor from DRAM to PMM may be
amortized by a resulting faster kernel execution. In the syn-
chronous formulation, tensor movement that blocks compu-
tation graph execution and may only happen between kernel
executions. The objective function then becomes

min Z P + Z M ()

keK teT

Kernel k1 Kernel k2 Kernel k3 Kernel k4 Kernel k5
| o |

Tensor tl

PMM

Tensor t2 SOURCE SINK

Tensor t3

(a) Static assignment. Tensors are created into either PMM or
DRAM and stay there.

Kernel k1 |Kernel k2|Kernel k3|Kernel k4 |Kernel k5
Tensor t1}:
PMM
Tensor t2 SOURCE
Tensor t3

(b) Synchronous Movement. Tensors are allowed to move just
before or just after the kernels that use or produce them. This
movement blocks program execution.

Figure 6. Overlap of multiple tensor graphs and their interactions with kernels. Following the color coordination in Figure 2, orange
denotes the producer of a tensor, lilac is the last user, gray marks the user of a tensor. We define the term component to refer to the

subgraphs within each shaded region.

where 7™ is the set of all intermediate tensors ¢ in the com-
putation graph and M;”™ is the total amount of time spent
moving tensor t. Note that a tensor ¢t may be moved multi-
ple times during its lifetime, so M;”" represents the sum of
movement times of all individual moves of ¢.

3.3 DRAM Variables

As noted above, the execution time of a kernel depends on the
locations of its input and output tensors. We must also keep
track of all live tensors in DRAM to establish a constraint
on the amount of DRAM used. Thus, we need machinery
to describe for each kernel k whether the input and output
tensors of k are in DRAM or PMEM and which tensors are
in DRAM during the execution of k.

For each kernel k € K and for each tensor t € 7 where t
is an input or output of k, we introduce a binary variable

DR _ {1 if ¢ is in DRAM during k

3
0 iftisin PMM during k ®

In practice, this variable is implemented as (>3 = 1 if and
only if any of the incoming edges to the DRAM node in the
component in the network flow graph G; for k are taken.

To determine tensor liveness, we introduce binary vari-
ables

4)

prav _ |1 if t is in DRAM after kernel k
Lkt 7)o ift is in PMM after kernel k

for each kernel k € K and for each tensor t € 7 where t is
an output or output of k. These variables describe whether a
tensor is written into DRAM after the execution of a kernel,
and if it remains in DRAM until the next time it is used. In
practice, this is implemented as ¢ = 1 if and only if the
outgoing DRAM to DRAM edge is taken from the DRAM

node in the component in network flow graph G; for k.

We make these two distinct class of variables to handle
the case in the synchronous formulation where a tensor is
prefetched from PMM to DRAM as an input to some kernel
k and then moved back to PMM immediately after k.

3.4 DRAM Constraints

Our main goal here is to establish a constraint on the amount
of DRAM used by the computation graph. We must ensure
that the sum of sizes of all live tensors in DRAM at any point
is less than some limit Lpram

We use the DRAM variables discussed in the previous
section. First, define a helper function ref(k, t) = k’ where
k,k’ € K and t € 7 with k’ defined as latest executing
kernel earlier or equal to k in the topological order of the
computation graph such that there exists DRAM node in G;
for kernel k’. For example, in Figure 6a, ref(ks, t;) = k; and
in Figure 6b, ref(ks, t;) = k.

We want to ensure that at the execution time for each
kernel k € K, the cumulative size of all live tensors resident
in DRAM is with some limit £pranm. Using the ref function,
we add the following constraint for each k € K:

DR T 1 < Lorave (5)
telO(k) tel(k)

where |¢| is the allocation size of tensor t in bytes, IO(k) is
the set of input and output tensors for k, and L(k) is the set
of all non-input and non-output tensors that are “live" during
the execution of k. We assign a separate limit Lpram, x for
each kernel k initialized to Lpram to address the memory
fragmentation issue discussed in Section 4.2

3.5 Kernel Configurations and Kernel Timing

For each kernel k € K, we use an integer variable pj for
the expected execution time of k given the locations of its
input and output tensors. First, we define a configuration ¢

as a valid assignment of each of a kernel’s input and output
tensors into DRAM or PMM. For example, a kernel with one
input and one output tensor may have up to four configura-
tions, consisting of all combinations of its input and output
in DRAM or PMM.

The definition of py is then

Pk = Z nk,cd,c (6)
ceC(k)
where C(k) is the set of all valid configurations ¢ for kernel k,
nk.c is the profiled execution time of kernel k in configuration
¢, and di . is a one-hot indicator with di . = 1 if and only if
kernel k’s input and output tensors are in configuration c.

3.6 Tensor Movement Timing

The movement cost of a tensor ¢ is the size of the tensor |¢|
divided by bandwidth between memory pools. Since band-
width may be asymmetric, we measure and apply each sepa-
rately. For each tensor ¢t € 7, the total synchronous move-
ment time M;”" is the sum of the number of taken edges in
G: from DRAM to PMM multiplied by the DRAM to PMM
bandwidth and the number of taken synchronous edges from
PMM to DRAM multiplied by the PMM to DRAM bandwidth.
In our case where tensors are immutable, we may apply
an optimization of only producing or moving a tensor into
PMM once. Any future movements of this tensor into DRAM
references the data that is already stored in PMM. Further
movements from DRAM to PMM become no-ops.

4 Implementation Details

In this section, we describe some of the implementation de-
tails which are not directly part of the ILP formulation. The
memory optimizer itself was implemented in the Julia [5]
programming language using the JuMP [12] package for ILP
modeling. Gurobi [18] was used as the backend ILP solver.
We chose nGraph [11] over other popular machine learn-
ing frameworks based on static computation graphs as our
backend because it is optimized for the Intel hardware and
is relatively easy to modify. However, AutoTM is a general
technique that can be integrated into other frameworks with
similar underlying semantics.

4.1 nGraph Compiler Backend

The nGraph compiler is an optimizing graph compiler and
runtime developed by Nervana Systems/Intel for deep learn-
ing (DL) applications aiming to provide an intermediate rep-
resentation (IR) between DL frameworks and hardware back-
ends. An nGraph IR is a directed acyclic graph (DAG) of
stateless operations nodes, each node with zero or more in-
puts, outputs, and constant attributes. Inputs and outputs of
each node are multidimensional arrays called tensors with

LAll of the AutoTM code can be found on GitHub at https://github.com/
darchr/AutoTM.

an arbitrary layout. The backend kernel used to implement
a node is chosen based on the attributes of the node as well
as the sizes, data types, and layouts of each of its inputs and
outputs. nGraph will also apply generic and backend spe-
cific whole graph optimizations such as kernel fusion and
algebraic simplification.

Memory location for intermediate tensors is performed us-
ing ahead-of-time heap allocation by traversing the function
DAG and maintaining a list of live tensors. When tensors
are last used, the memory space occupied by those tensors
is freed and used for future tensors.

4.2 Managing Memory Fragmentation

The ILP formulation presented thus far assumes perfect mem-
ory management, which means that if the sum of sizes of
live tensors is under the memory limit, then all tensors will
fit within memory. In practice, this is not always the case.
The process of allocating and freeing tensors may fragment
memory resulting in a larger memory requirement.

To manage this, we use an iterative process of reducing
the DRAM limit for kernels where the the following limit is
exceed and rerunning the ILP.

1. We initialize the kernel-wise DRAM limits Lpram.
to the Lpram.

2. We solve the ILP using the current values of Lpram, -
nGraph translates the resulting schedule and then ex-
ecutes its memory allocator pass.

3. We collect the set of kernels K,z Where the total
amount of memory allocated exceeds Lpram due to
fragmentation. If this set is empty, we are done.

4. Otherwise, we apply an update Lpram,x = 0.98 Lpram. i
for all k € Ko and go back to step (2).

Thus, the ILP solver may have to run multiple times before
a valid solution is found. In practice, this process is usually
only done 1 to 2 times with a maximum of 5 as discussed in
Section 6.6.

4.3 Data Movement Implementation

Synchronous movement operations are integrated as new
move nodes in the nGraph compiler, which are automatically
inserted into the nGraph computation graph following mem-
ory optimization. The implementation of these move nodes
uses a multithreaded memory copy with AVX-512 streaming
load and store intrinsics followed by a fence.

Operation scheduling in nGraph consists of a simple topo-
logical sort of the nodes in the computation graph, beginning
with the input parameters. This creates unnecessary mem-
ory usage with move nodes as they are scheduled ad hoc,
resulting in tensor lifetimes that are longer than necessary.
Thus, we extended the nGraph scheduler so that if a tensor is
moved from DRAM to PMM after some kernel k, we ensure
that this movement occurs immediately after the execution
of k. Conversely, if a tensor is moved from PMM to DRAM

https://github.com/darchr/AutoTM
https://github.com/darchr/AutoTM

to be used for kernel k, we ensure this occurs immediately
before the execution of k.

5 Evaluation Methodology
5.1 System

Our experimental Optane DC system was a prototype dual
socket Xeon Cascade-Lake server. Each socket had 6 x 32 GB
of DRAM and 6 X 128 GB Intel Optane DIMMs. Each CPU
had 24 hyperthreaded physical cores. In total, the system
had 384 GB of DRAM and 1.5 TB NVDIMM storage.

NUMA policy was set to local by default. Unless specified
otherwise, all experiments were conducted on a single socket
with one thread per physical core. Each workload was run
until execution time per iteration (traversal of the computa-
tion graph) was constant. Since these workloads contain no
data dependent behavior, performance will be constant after
the first couple of iterations. Checks were used to ensure no
IEEE NaN or subnormal numbers occurred, which can have
a significant impact on timing [3].

Our approach does not change the underlying computa-
tions performed during training; it is a transparent backend
implementation optimization. Thus, the performance of our
benchmarks across a few training iterations is sufficient to
obtain performance metrics.

We chose to evaluate AutoTM with a multicore CPU plat-
form because Optane PMMs are only available for CPU plat-
forms. However, the ILP formulation of AutoTM should apply
to any heterogeneous memory system. We explore one other
example with CPU and GPU DRAM in Section 7.

5.2 DNN Benchmarks

We choose a selection of state of the art Deep Neural Net-
works for benchmarking our approach. A summary of the
benchmarks and batch sizes used is given in Table 1. Con-
ventional CNNs for the Optane DC system were Inception
v4 [41], Resnet 200 [21], DenseNet 264 [24], and Vgg19 [39].
All but Vgg19 have complex dataflow patterns to stress test
AutoTM. The batch sizes were chosen to provide a memory
footprint of over 100 GB for each workload. These batch
sizes, while larger than what is typically used, mimic future
large networks while still fitting within the DRAM of a single
CPU socket of our test system.

We also compare our approach against the native 2LM
mode, which is a hardware solution to data management
that uses PMM transparently with CPU DRAM as a cache.
Since we can not change the physical amount of DRAM used
by 2LM, we used very large neural networks that exceed the
CPU DRAM and require the use of PMM to train. These very
large networks include Vgg416 [36] (constructed by adding
20 additional convolution layers to each convolution block
in Vgg16) and Inception v4 with a batch size of 6144.

‘ Benchmark ‘ Batchsize ‘ System ‘ Baseline Memory (GB) ‘
Inception v4 1024 PMM 111
Resnet 200 512 PMM 132
Vgg 19 2048 PMM 143
DenseNet 264 512 PMM 115
Inception v4 6144 Large PMM 659
Vgg 416 128 Large PMM 658
Resnet 200 2560 Large PMM 651
DenseNet 264 3072 Large PMM 688
Inception v4 | 64, 128, 256 GPU 7.6, 14.7, 29.8
Resnet 200 32, 64, 128 GPU 8.7,16.9,32.2
DenseNet 264 | 32, 64, 128 GPU 8.5,16.8,32.4
Vgg 19 64,128 GPU 7.1,12.6

Table 1. Summary of the benchmarks used in this work.

5.3 Experiments

We want to determine whether PMM is cost effective for
training DNNs, and how AutoTM compares against existing
solutions to use PMM.

For the conventional benchmarks, we consider the im-
pact of performance with different ratios between PMM and
DRAM. These ratios are given in the form a : b where a
is the amount of PMM relative to b the amount of DRAM
used to train the network. A ratio of 1 : 1 indicates that a
network was trained with half PMM and half DRAM. For a
network requiring 128GB total to train would have a split of
64 GB PMM and 64 GB DRAM. Setting a ratio such as this
may lead to a larger total memory footprint in total due to
memory fragmentation in both PMM and DRAM. However,
in practice the total memory footprint expansion is minimal
with an observed maximum observed value of 3.83% occur-
ing in the static formulation for Inception v4. A ratio of 0 : 1
denotes a system where only DRAM is used while 1: 0is a
system using only PMM.

We use a baseline of a first-touch NUMA allocation policy
with DRAM as a near node and PMM as a far node for the
conventional benchmarks. The NUMA policy was encoded in
our framework by assigning intermediate tensors to DRAM
as they are created until the modeled memory capacity of
DRAM is reached. Future tensors can only reside in DRAM
if existing tensors are freed.

For the large benchmarks, we compare our approach to
the 2LM hardware managed DRAM cache to determine the
effectiveness of AutoTM relative to an existing approach.

6 Results
6.1 Conventional Networks

Figure 7 shows the speedup provided by our scheduling for
over training solely with PMM (ratio 0 : 1). The horizontal
axis is the ratio of PMM to DRAM used to train the network.
We observe that when PMM is used as a direct substitute
for DRAM, performance is poor with a 3x to 8x increase in
training time (red horizontal line). However, with a minimal
amount of DRAM such as an 8 : 1 PMM to DRAM ratio, we

= Inception v4 Resnet200

=5 s e e T e ————

oM i ~
4l i

= 3 -

g 31 N

5 2 n o i

i) CLalll il

5 " LEC T e

& 8:1 4:1 1:1 8:1 4:1 1:1

= Vggl9 DenseNet 264

— | | | 1

] R &]

= HH Hﬂﬂ i H ﬂ]

=

3 ﬂ] I B .

[=7

n

PMM to DRAM Ratlo PMM to DRAM Ratlo

‘ DoNUMA U ostatic-AutoTM [Dsync-AutoTM - - = All DRAM ‘

Figure 7. Results for conventional networks. Note different y-axes.
The baseline (1.0 in the graphs) is a system with only PMM (ratio
of 0:1).

are able to dramatically improve performance without chang-
ing the overall memory footprint of the application. Further,
adding more DRAM only marginally increases performance.

This above performance gain does not occur using conven-

tional first-touch NUMA. This is because first-touch NUMA [27]

works by allocating tensors into DRAM as they are used by
the computation graph until the DRAM capacity is reached.
In the training of DNNSs, tensors produced early on in the
forwards pass are used during the backwards pass and thus
must be live for the majority of the graph’s computation [36].
With first-touch NUMA, these long lived tensors are assigned
to DRAM forcing future short-lived tensors into PMM.

AutoTM, on the other hand, is aware of the performance
implication of these long lived tensors. The general strategy
AutoTM takes is to prioritize short-lived tensors for DRAM
placement (Section 6.4). These short-lived tensors mainly
include intermediate tensors generated during the backwards
pass. By prioritizing short-lived tensors, AutoTM ensures
that more tensors overall may reside in DRAM.

Vgg is an outlier due to its extremely large second con-
volution layer. With small DRAM sizes, some or all of the
input and output tensors of this large layer must be placed in
PMM, incurring a performance penalty. Once these tensors
can be placed in DRAM, we see a significant performance
improvement as can be seen in the performance jump from
the 4 : 1 ratio to the 1 : 1 ratio. Another interesting feature
of this network is that the synchronous formulation performs
slightly worse than the static formulation for an 8 : 1 ratio.
This is caused by the interaction between the insertion of
move nodes and the defragmentation procedure.

‘ o static—AutoTM lo sync—AutoTM ‘

FTWTWWHH WW

(61443 (200 (2060)

3,

l\')

—_

Speedup over 2LM

o

VeeAld (pt jon vA of 264 (3072)

Figure 8. Performance of the static and synchronous formulations
relative to 2LM cached mode.

0o vggl9 [0DenseNet 264
I 0Resnet20000 Inception v4

1 | | | 1

0.6 - 0.6
0.4 0.4

0.2 I 0.2
RI1] . 0

1:0 8:1 4:1 1:1
PMM to DRAM Ratio

Performance Relative to all DRAM
oo %
Memory costrelative to all DRAM

Figure 9. Price-performance analysis. The bars (left axis) show the
network performance relative to all DRAM while the dollar signs
(right axis) show the memory system price relative to all DRAM.
The regions where the bars are higher than the dollar signs are
regions where price—performance is lower.

6.2 Comparison to a hardware DRAM cache

We use very large networks to compare AutoTM to a hardware-
controlled DRAM cache (2LM mode). The results from the
large benchmarks Vgg416 and the large batchsize Inception
v4 are shown in Figure 8. The static formulation has perfor-
mance comparable to 2LM with the synchronous formulation
running 23% faster. We see further improvement for the
other networks, with Resnet 200 running over 2x faster than
2LM. Inception v4, on the other hand, runs almost 2x faster
under the synchronous formulation than under 2LM. Since
2LM is a DRAM caching strategy, there is overhead involved
in maintaining cache metadata. For complex networks like
Resnet 200 and DenseNet, it is likely that 2LM is unable to
perform accurate prediction and prefetching. This leads to a
performance penalty for 2LM that is not incurred by AutoTM.
Additionally, the 64-byte block-based data movement of the
hardware DRAM cache may reduce performance compared
to the large contiguous data movement in AutoTM.

6.3 Cost-Performance Analysis

Can PMM offer a cost performance advantage over DRAM
for training large DNNs? Table 2 provides a summary of

Capacity (GB) \ Price per DIMM \ Price per GB

DRAM 8 $190.45 $23.81
DRAM 16 $265.82 $16.61
DRAM 32 $602.50 $18.83
DRAM 64 $1,255.75 $19.62
DRAM 128 $2,512.00 $19.63
Optane 128 $1,004.50 $7.85
Optane 256 $3,466.75 $13.54
Optane 512 $10,552.00 $20.61

Table 2. Lenovo price summary of Optane and server class DRAM.
(see footnote 2)

module cost and cost per GB for a selection of server class
DRAM and Optane DIMMs, as quoted by Lenovo?. The price
per GB of DRAM stays roughly constant across module sizes.
PMM, on the other hand, increases in price per GB as capacity
increases. Prices are driven by business decisions. Because
a 512 GB DRAM DIMM is not available, a premium can be
charged for this capacity module.

For our analysis, we use the price of the cheapest PMM at
$7.85 per GB and the cheapest DRAM at $16.61 per GB. This
means the cost-per-GB advantage of PMM over DRAM is
about 2.1x. In Figure 9 we only include the cost of the memory
actually used. Since Optane DC is a new technology, prices
are still adjusting, and as the technology matures, price will
likely decrease, improving its cost-effectiveness.

Figure 9 shows the relative performance of AutoTM for our
workloads (bars, left axis) as well as the cost of memory used
by the application relative to the case where all DRAM is used
(dollars, right axis). The use of PMM can be cost effective if
the performace lost by replacing some DRAM with PMM is
less than the cost reduction. We observe that only using PMM
directly is not cost effective, the performance loss caused by
the slower devices is not offset by the lower price. However,
for PMM to DRAM ratios of 4 : 1 and 1 : 1, AutoTM can
provide a cost-performance benefit. This cost-performance
benefit may be reduced when taking the whole system into
account, but the cost of memory is usually the dominant cost
in large systems.

6.4 Understanding the ILP Solution

In this section, we present some insight to how and why Au-
toTM works using Figure 10. Figure 10a shows the slowdown
of the static and synchronous relative to all DRAM. With
a small amount of DRAM, performance improves rapidly.
This trend continues until a critical threshold where adding
DRAM yields diminishing returns.

To understand this behavior, we look at the input and out-
put memory locations for each kernel as well as the amount
of data moved. Figure 10b shows the percent by memory

Zhttps://www.lenovo.com/us/en/p/7X05A01TNA/customize?dcscGuid=
f3dd16d0-96dd-4deb-9c48-9c6cec9578ba (accessed August 14, 2019)

footprint of kernel input and output tensors in DRAM. We
see a trend to assign as many kernel inputs and outputs into
DRAM, with a slight priority on output tensors. This is con-
sistent with the lower write bandwidth of PMM. Furthermore,
the point where almost 100% of output/input tensors are in
DRAM corresponds to the critical point in the performance
graphs. This implies a general strategy to maximize kernel
read and write memory accesses in DRAM, followed by data
movement to PMM when DRAM capacity constrained.
This idea is reinforced by Figure 10c, which shows the
total amount of memory moved between DRAM and PMM
in the synchronous formulation. With a DRAM limit near
zero, no data movement occurs since no data may be moved
into DRAM. A small DRAM allowance, however, is followed
by a dramatic increase in data movement, again with an
emphasis on moving data from DRAM to PMM. Once the
DRAM limit allows almost all tensor inputs/outputs to reside
in DRAM, the amount of data movement decreases. The
region of gradual slowdown seen in the performance plot
is caused primarily by data movement rather than kernel
slowdown from more memory accesses to PMM.

6.5 Kernel Profiling Accuracy

To evaluate the accuracy of our profile based approach, we
show the error between the expected runtime and the mea-
sured runtime in Figure 11. The worst case error occurs for
in the static formulations for DenseNet 264 (19%). This error
is likely due to CPU caching. During profiling, move nodes
are placed at the inputs of kernels under test to allow the
inputs and outputs of the kernel to be varied between DRAM
and PMM. Kernels cannot be directly profiled due to levels
of indirection used in nGraph. Because move nodes are im-
plemented using streaming instructions, no data is resident
in CPU caches following these instructions. Hence, our pro-
filing step is essentially measuring the cold-performance of
these kernels. This results in an overestimation in run time for
the static formulation since no move nodes are used. Vgg19
is less affected due to its very large intermediate layers.

The expected runtime for the synchronous formulation
closely follow the predicted runtime because of the use of
move nodes placed in the computation graph. The error in
the 1 : 0 all PMM case exists for similar reasons.

6.6 ILP Solution Times

It is important that the memory optimizer is able to run in a
reasonable amount of time. Although ILP is inherently NP-
hard, recent solvers can find solutions to many problems
quickly. Table 3 shows the total amount of time optimizing
the ILP. The number of retries due to memory fragmentation
is shown in parentheses. Solution time increases with model
complexity. Since the optimized computation graph will run
for days or weeks to fully train the DNN, this optimization
overhead will be amortized. The worst case is the static

https://www.lenovo.com/us/en/p/7X05A01TNA/customize?dcscGuid=f3dd16d0-96dd-4deb-9c48-9c6cec9578ba
https://www.lenovo.com/us/en/p/7X05A01TNA/customize?dcscGuid=f3dd16d0-96dd-4deb-9c48-9c6cec9578ba

DRAM Limit (GB)

(a) Slowdown relative to all DRAM.
and outputs in DRAM.

=
é ‘ - static 2 - : : T T

A —®- synchronous e 1p o —8— sync DRAM to PMEM
=4 2 ! g 150 |- —&-sync PMEM to DRAM ||
s k= ! <) ;

4§ 5 o | g !
23k = - | 14 L [
E S 05 - g 10 3

= z | = |

Dj 9l B 4 - static: input tensors 2 501 i i
z 3 - static: output tensors é : !

8 é —@— synchronous: input tensors i i

té 1 ‘ | | | | | B g (s ! —&—synchronous: output tensors 0 ! | | | | ‘ B
7 0 20 40 60 80 100 120 A~ 0 20 40 60 80 100 120 0 20 40 60 8 100 120

DRAM Limit (GB)

(b) Percent by memory size of all kernel inputs

DRAM Limit (GB)

(¢) Amount of data moved between DRAM and
PMM.

Figure 10. AutoTM’s solution strategy for Inception v4.

00 Inception v4 - static [0 Resnet200 - static

00vggl9 - static B0 DenseNet 264 - static

B Inception v4 - synchronous I Resnet200 - synchronous
00Vvggl19 - synchronous 00 DenseNet 264 - synchronous

[\
(=]
|

olm=g DDD'.-F

[==)

Relative Predicted
Runtime Error %
—
o

HJ“IlH 1 I u“= - DH |

T T T
1:0 8:1 4:1 1:1 0:1
DRAM Limit (GB)

Figure 11. Comparison of actual execution time and execution time
predicted by kernel-wise profiling for the conventional networks.

Static Synchronous
Network 8:1 | 4:1 | 1:1 8:1 | 4:1 | 1:1
Vggl9 0.40(1) | 0.70(2) | 0.82(2) | 25(5 | 1.7(3) | 0.94(2)
Inception v4 || 37.9 (5) | 16.4(2) | 13.7(2) | 50.3 (6) | 15.3(2) | 16.4(2)
Resnet 200 || 2846 (2) | 3105 (3) | 91.9 (1) | 710 (2) | 571 (2) | 79.9 (2)
DenseNet || 3307 (1) | 2727 (1) | 2582 (1) | 1448 (3) | 2021 (3) | 1404 (2)

Table 3. Gurobi ILP solver time to a relative MIP gap of 0.01 for the
static and synchronous formulations for the conventional networks.
Entries of the form a (b) indicate the total time a in seconds it took
to solve the ILP b times. Multiple solutions are needed in the case
of memory fragmentation management.

formulation for DenseNet which takes a little less than an
hour to fully solve.

7 Extending AutoTM

In this section, we discuss two extensions to AutoTM: al-
lowing asynchronous data movement and performing kernel
implementation selection. We explain why these extensions
were not included in the original formulation and demon-
strate their viability on a CPU-GPU platform. These exten-
sions and the GPU implementation of AutoTM show that it

is a general and flexible framework for managing heteroge-
neous memory.

The first extension we investigate is asynchronous offload-
ing and prefetching of intermediate tensors between mem-
ory pools. This allows data movement to be overlapped with
computation, improving the throughput of the application as
a whole. We implemented asynchronous data movement on
the PMM system, but found it performed poorly on existing
CPU only systems for a number of reasons. Neither a dedi-
cated copy thread nor DMA provided sufficient performance
to mitigate the overhead of these approaches. However, a
PCle connected GPU offers a high speed asynchronous data
copy API, which is ideal for implementing this extension.

The second extension to the formulation is performing ker-
nel implementation selection. The underlying library used
by nGraph to perform forward and backward convolutions
for the GPU backend is cuDNN [9], a deep learning library
from Nvidia. This library exposes several different imple-
mentations for each convolution, each with performance
and memory footprint tradeoffs. Generally, faster implemen-
tations require more memory. In a memory starved case,
this larger memory footprint may require more offloading
of previous tensors, resulting in a global slowdown. Since
nGraph does not expose any kernel selection options for the
CPU backend, we implement this on the GPU instead.

7.1 ILP Formulation Modifications

Since AutoTM is implemented using an ILP formulation, we
can extend it to be aware of the performance and memory
footprint of these different kernels and globally optimize
tensor movement and implementation selection. Here, we
provide a high level overview of the additions to the ILP
formulation to express asynchronous data movement and
kernel implementation selection.

7.1.1 Objective Function:

In our formulation, we allow an arbitrary number of tensors
to be moved between GPU and CPU DRAM concurrently

with a single kernel. This results in a new objectives function

min Z max 9 Pk, Z M?’Sznc + Z M (7)
keK teASYNC(k) teT
where ASYNC(k) = {t € 7 :t can be move concurrently
with k} and M?SZHC is the amount of time (if any) spent mov-
ing tensor ¢ dufing the execution of k. The max operation is
implemented using standard ILP techniques.

7.1.2 Tensor Graphs:

We must extend the tensor flow graphs G, to encode points of
asynchronous tensor movement. We identify kernels that can
be overlapped with data movement and add a component in
each tensor’s graph (like those shown in Figure 6b) for each
kernel with which the tensor can be moved concurrently.

7.1.3 Asynchronous Data Movement:

Asynchronous move times for tensor t must be generated
for each kernel k across which t may be moved. This comes
directly from the extended tensor graph

|| |]
M = (— ep—p + | e | 0P ()
t,k ASYNC - ASYNC -
BW3>) BW3 L5
where ep_,p (ep—p) is the binary edge variable in &; corre-
sponding to the asynchronous movement of ¢ from PMM to

DRAM (DRAM to PMM) across kernel k.

7.1.4 Selecting Kernel Implementations:

Let (k) = {1,2,...,n;} be an enumeration of the imple-
mentations for kernel k. We generate one-hot binary vari-
ables v; i for all i € 7 (k) where v; ;. = 1 implies implemen-
tation i is to be used for kernel k.

7.1.5 DRAM Constraints:

Constraining DRAM is similar to the static and synchronous
formulations, but now includes kernel memory footprints
with
DRAM DRAM
Z Sk,iVk,i + Z tt’]f\ + Z tt,r/;f(k)+ < Lpram (9)
iel(k) t€I0(k) tel(k)
where sy ; is the memory footprint of implementation i of k.

7.1.6 Kernel Timing:

The expected runtime of a kernel is now dependent on which
implementation of the kernel is chosen. Building on the ex-
ample given in Section 3.5, assume that k has two implemen-
tations (i.e. 7 (k) = {1, 2}). The expected execution time for
pk kernel k is modeled as

Pk = Z Z nk,c.i(dk,c A Vi) (10)
ceC(k)iel(k)
with ny . ; is the profiled runtime of implementation i of ker-

nel k in IO configuration c. This approach does not account
for the performance impact of memory conflict between data

movement and the computation kernel. However, the maxi-
mum memory bandwidth of our GPU is 616 GB/s while the
maximum bandwidth of PCle is 16 GB/s. Thus, the impact
of asynchronous data movement is likely low.

7.2 Implementation

We modified the GPU backend of nGraph to support syn-
chronous and asynchronous tensor movement as well as to
allow for kernel selection of forward and backward convolu-
tion kernels. All GPU kernels are profiled with inputs and
outputs in GPU memory. When implementation selection is
available, all possible implementations of a kernel are pro-
filed as well. Asynchronous movement was implemented
using two CUDA [31] streams: one for computation and
the other for data movement via cudaMemcpyAsync. These
streams are synchronized before and after an asynchronous
movement/computation overlap to ensure data integrity.

7.3 Methodology

Our system used a Nvidia RTX 2080 Ti with 11 GB of GDDR6
using CUDA 10.1 and cuDNN 7.6. The host system was an
Intel Core 19-9900X with 64 GB of DDR4 DRAM.

We use the same convolutional neural networks used ear-
lier. The networks and batch sizes used are given in Table 1.
We compare the results of AutoTM with the performance
of cudaMallocManaged, which is a memory virtualization
layer offered by Nvidia for automatically moving data from
the CPU to the GPU in the event of a GPU page fault and
moving unused pages from GPU DRAM to CPU DRAM.

7.4 GPU Results

The results for the GPU experiments are given in Figure 12.
For networks that fit on the GPU, our approach has no
overhead as the ILP optimizer realizes no data movement
is needed. As the intermediate working set increases, we
observe a several fold improvement with AutoTM over cud-
aMallocManaged due to the lack of runtime overhead of our
approach and its algorithm awareness. AutoTM provides con-
siderable speedup when data movement between the CPU
and GPU is required. The asynchronous extension outper-
forms the synchronous formulation with its ability to overlap
data movement and computation. However, the asynchro-
nous extension is limited to overlapping tensor movement
with a single kernel at a time. Since the RTX 2080 Ti executes
kernels faster than data movement, time must be spent to
synchronize the two CUDA streams.

The synchronization overhead of overlapping tensor move-
ment with a single kernel can be seen by comparing the
achieved performance with the theoretical best performance,
calculated by assuming infinite GPU DRAM capacity and
using the fastest possible implementations for all kernels.
As the memory requirement for training increases, AutoTM
achieves a lower fraction of this best performance due to
synchronization.

I 0synchronous [l D asynchronous [l Doracle

—_
FNWHROIOI 00O O
T T T T T T T T7
I Y |

Speedup over
CudaMallocManaged

el el] e 0L

28 256 64 64 128
Inception v4 Resnet200 DenseNet 264 Vggl9

Figure 12. GPU performance of AutoTM relative to cudaMalloc-
Managed.

We did not compare our results directly against vDNN [36]
for two reasons. First, the RTX 2080 Ti GPU is much faster
than the Titan X used in that work and thus we cannot com-
pare results directly. Second, the code for vDNN is not avail-
able, making direct testing on our GPU difficult. However,
while vDNN leverages the same characteristics as AutoTM
(communication overlapping, kernel selection, and liveness
analysis), AutoTM uses mathematical optimization rather
than heuristics providing a more general solution.

8 Related Work

As an emerging technology Intel Optane DC has been ex-
plored in several recent works. These include in depth perfor-
mance analysis [25], large graph analytics [15], and database
I/O primitives [42]. Research into using Optane PMM for
virtual machines demonstrates that only a small amount
of DRAM is needed [23]. Flash based SSDs have also been
used to reduce the DRAM footprint in database [13] and
ML [14] workloads. These approaches use a software man-
aged DRAM cache to mitigate the slow performance and
block level read/write granularity of NVM SSDs. Operating
system support for managing heterogeneous memory [2, 45]
and support for transparent unified memory between GPU
and CPU [26, 33] have been studied extensively in the past.
However, to the best of our knowledge, the proposed work
is the first to explore the design space and cost-performance
tradeoffs of large scale DNN training on systems with DRAM
and PMM.

Previous works such as vDNN [36] exploit heterogeneous
memory between GPUs and CPUs by recognizing that the
structure of DNN training computation graphs has a pat-
tern where intermediate tensors produced by early layers
are not consumed until much later in the graph execution.
The authors of vVDNN exploit this to develop heuristics for
moving these tensors between GPU and CPU DRAM dur-
ing training to free GPU memory. SuperNeurons [44] and
moDNN [8] build on vDNN. SuperNeurons introduces a run-
time manager for offloading and prefetching tensors between
GPU and CPU memory as well as a cost-aware method of
applying recomputation of forward pass layers during the
backward pass to reduce memory. Similar to our approach,
moDNN allows tensors to be offloaded and uses profiling

information of kernel runtime and expected transfer time to
determine how it will overlap computation and communi-
cation. AutoTM differs from these previous approaches in
that we use mathematical optimization rather than problem
specific heuristics. AutoTM also generalizes the location of
data across DRAM and PMM instead of requiring data to be
in DRAM for computation.

Integer Linear Programming and profile guided optimiza-
tion have been used widely to address similar problems in
research literature. For example, work in the embedded sys-
tem space [4] uses ILP in to optimize the allocation of heap
and stack data between fast SRAM and slow DRAM. ILP
has also been used in register allocation [17] and automatic
program parallelization [20]. ILP has been used to optimize
instruction set customization and spatial architecture sched-
uling [32]. Profile guided optimization has been used for
dynamic binary parallelization [48], process placement on
SMP clusters [7] and online autotuning of CPU and GPU
algorithm selection [34]. AutoTM builds on these ideas to ad-
dress the new problem of data movement in heterogeneous
memory systems.

9 Conclusions

We present AutoTM, an ILP formulation for modeling and
optimizing data location and movement in static computa-
tion graphs such as those used for training and inference of
DNNs. AutoTM uses profile data to optimally assign kernel
inputs and outputs into different memory pools and schedule
data movement between the two pools to minimize execu-
tion time under a memory constraint. With AutoTM, we can
obtain 2x performance improvement over hardware DRAM
caching solutions. We further find Intel Optane PMM can
reduce the DRAM footprint of DNN training by 50 to 80%
without significant loss in performance. Given the lower cost
of Optane PMM, this can yield a cost-performance benefit
in systems with mixed DRAM and PMM over a system with
only DRAM.

AutoTM uses minimal problem specific heuristics, making
it generally applicable to different systems and networks. We
demonstrate this flexibility by extending AutoTM to GPUs,
and believe it can be further extended to further heteroge-
neous systems, such as those with multiple GPUs or multi-
level systems with HBM, DRAM, and PMM.

10 Acknowledgements

This work is supported in part by the Intel corporation and
by the National Science Foundation under Grant No. CNS-
1850566.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

(5]
(6]

[10

[t

[11

—

(14]

(15]

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), pages 265-283, Savannah, GA, 2016. USENIX Association.

Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main memory. In Yunji
Chen, Olivier Temam, and John Carter, editors, Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017, pages 631-644. ACM, 2017.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy, SP ’15, pages 623-639, Washington, DC, USA, 2015. IEEE
Computer Society.

Oren Avissar, Rajeev Barua, and Dave Stewart. Heterogeneous mem-
ory management for embedded systems. In Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, CASES 01, pages 34-43, New York, NY, USA, 2001.
ACM.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia:
A fresh approach to numerical computing. CoRR, abs/1411.1607, 2014.
Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN
training for high fidelity natural image synthesis. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn.
MPIPP: an automatic profile-guided parallel process placement toolset
for SMP clusters and multiclusters. In Gregory K. Egan and Yoichi Mu-
raoka, editors, Proceedings of the 20th Annual International Conference
on Supercomputing, ICS 2006, Cairns, Queensland, Australia, June 28 -
FJuly 01, 2006, pages 353-360. ACM, 2006.

X. Chen, D. Z. Chen, and X. S. Hu. modnn: Memory optimal dnn
training on gpus. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 13-18, March 2018.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.

Ronan Collobert and Jason Weston. A unified architecture for natural
language processing: Deep neural networks with multitask learning.
In Proceedings of the 25th international conference on Machine learning,
pages 160-167. ACM, 2008.

Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram
Bobba, Matthew Brookhart, Avijit Chakraborty, William Constable,
Christian Convey, Leona Cook, Omar Kanawi, Robert Kimball, Ja-
son Knight, Nikolay Korovaiko, Varun Kumar, Yixing Lao, Christo-
pher R. Lishka, Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath
Narayana, Adam Procter, and Tristan J. Webb. Intel ngraph: An in-
termediate representation, compiler, and executor for deep learning.
CoRR, abs/1801.08058, 2018.

Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling
language for mathematical optimization. SIAM Review, 59(2):295-320,
2017.

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim M. Hazelwood, Chris Petersen, Asaf Cidon, and
Sachin Katti. Reducing DRAM footprint with NVM in facebook. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto,
Portugal, April 23-26, 2018, pages 42:1-42:13, 2018.

Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy,
Sergey Pupyrev, Kim M. Hazelwood, Asaf Cidon, and Sachin Katti.
Bandana: Using non-volatile memory for storing deep learning models.
CoRR, abs/1811.05922, 2018.

Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Ke-
shav Pingali. Single machine graph analytics on massive datasets

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

using intel optane DC persistent memory. CoRR, abs/1904.07162, 2019.
Andrew Goldberg, Eva Tardos, and Robert Tarjan. Network flow
algorithms. page 80, 04 1989.

David W. Goodwin and Kent D. Wilken. Optimal and near-optimal
global register allocations using 0–1 integer programming.
Softw. Pract. Exper., 26(8):929-965, August 1996.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.
Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. Platform
storage performance with 3D XPoint technology. Proceedings of the
IEEE, 105(9):1822-1833, 2017.

Mary W. Hall, Jennifer-Ann M. Anderson, Saman P. Amarasinghe,
Brian R. Murphy, Shih-Wei Liao, Edouard Bugnion, and Monica S.
Lam. Maximizing multiprocessor performance with the SUIF compiler.
Digital Technical Journal, 10(1):71-80, 1998.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.
Joel Hestness, Newsha Ardalani, and Gregory Diamos. Beyond human-
level accuracy: Computational challenges in deep learning. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, PPoPP 19, pages 1-14, New York, NY, USA, 2019. ACM.
Takahiro Hirofuchi and Ryousei Takano. The preliminary evaluation
of a hypervisor-based virtualization mechanism for intel optane DC
persistent memory module. CoRR, abs/1907.12014, 2019.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson,
Stephen R. Beard, and David I. August. Automatic CPU-GPU commu-
nication management and optimization. In Mary W. Hall and David A.
Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 142-151. ACM, 2011.

Christoph Lameter. Numa (non-uniform memory access): An overview.
Queue, 11(7):40:40-40:51, July 2013.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-
2324, Nov 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. Deep learning recommendation model for personaliza-
tion and recommendation systems. CoRR, abs/1906.00091, 2019.
John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. Queue, 6(2):40-53, March 2008.
Tony Nowatzki, Michael Ferris, Karthikeyan Sankaralingam, Cristian
Estan, Nilay Vaish, and David Wood. Optimization and mathematical
modeling in computer architecture. Synthesis Lectures on Computer
Architecture, 8(4):1-144, 2013.

Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil. Fast
and efficient automatic memory management for gpus using compiler-
assisted runtime coherence scheme. In Pen-Chung Yew, Sangyeun
Cho, Luiz DeRose, and David J. Lilja, editors, International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT 12,
Minneapolis, MN, USA - September 19 - 23, 2012, pages 33-42. ACM,
2012.

—

[34] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-

Kelley, and Saman Amarasinghe. Portable performance on hetero-
geneous architectures. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS °13, pages 431-444, New York, NY, USA,
2013. ACM.

Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R. de Supinski,
Sally A. McKee, Petar Radojkovi¢, and Eduard Ayguadé. Another trip
to the wall: How much will stacked dram benefit hpc? In Proceedings
of the 2015 International Symposium on Memory Systems, MEMSYS 15,
pages 31-36, New York, NY, USA, 2015. ACM.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W. Keckler. vdnn: Virtualized deep neural networks for scal-
able, memory-efficient neural network design. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-49,
pages 18:1-18:13, Piscataway, NJ, USA, 2016. IEEE Press.

Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1986.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean. Outrageously large
neural networks: The sparsely-gated mixture-of-experts layer. CoRR,
abs/1701.06538, 2017.

K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104-3112, 2014.

Christian Szegedy, Sergey loffe, and Vincent Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on learning.
CoRR, abs/1602.07261, 2016.

[42] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,

and Alfons Kemper. Persistent memory I/O primitives. CoRR,
abs/1904.01614, 2019.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu,
Max Jaderberg, Wojciech M Czarnecki, Andrew Dudzik, Aja Huang,
Petko Georgiev, Richard Powell, et al. Alphastar: Mastering the real-
time strategy game starcraft ii. DeepMind Blog, 2019.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons: Dynamic
GPU memory management for training deep neural networks. CoRR,
abs/1801.04380, 2018.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Iris Bahar,
Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors, Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019, pages 331-345. ACM, 2019.
Heiga Ze, Andrew Senior, and Mike Schuster. Statistical parametric
speech synthesis using deep neural networks. In 2013 ieee international
conference on acoustics, speech and signal processing, pages 7962-7966.
IEEE, 2013.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang,
Xiaolei Huang, and Dimitris N Metaxas. Stackgan: Text to photo-
realistic image synthesis with stacked generative adversarial networks.
In Proceedings of the IEEE International Conference on Computer Vision,
pages 5907-5915, 2017.

Ruoyu Zhou and Timothy M. Jones. Janus: Statically-driven and profile-
guided automatic dynamic binary parallelisation. In Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2019, pages 15-25, Piscataway, NJ, USA, 2019. IEEE
Press.

A Artifact Appendix
A.1 Abstract

Our artifact contains the full source code created by the
authors for this work. It includes the changes made to the
ngraph compiler, a ngraph front-end for creating neural
networks, the ILP modeling code, and the code for running
experiments and generating the plots in this work. The code
is capable of running on either a Intel Optane DC PMM
equipped system or a system with an Nvidia GPU.

A.2 Artifact check-list (meta-information)

e Algorithm: Integer Linear Program for modeling data-

movement for static computation graphs.

Compilation: Scripts for compilation are included. Clang

6.0 or newer required.

Run-time environment: Ubuntu 18.04 with Linux Kernel

v4.2 or newer. Root access required if using a Optane DC

PMM equipped system to set up and mount NVDIMMs. If

running GPU experiments, CUDA 10 and cuDNN 7.6.

Hardware: For the Optane DC experiments, a 2-socket Intel

Cascade Lake server with Optane DC support. For the GPU

experiments, an Nvidia GPU is needed.

Run-time state: Execution of the benchmarks on a Op-

tane DC equipped system should be performed shortly after

reboot to minimize memory fragmentation.

e Execution: For the Optane DC equipped system, process

pinning to happens automatically.

Metrics: Execution time, tensor location metrics, and pro-

filing error.

e Output: Serialized Julia dictionaries holding intermediate
results, LaTeX source/PDFs for plots based on the result data.

e Experiments: Manual invocation of high level functions.

e How much disk space required (approximately)?: 5-
10 GB of disk space after compilation.

e How much time is needed to prepare workflow (ap-
proximately)?: 20-30 minutes for compilation of depen-
dencies.

e How much time is needed to complete experiments
(approximately)?: Optane DC system: Conventional work-
loads take 1-4 hours each to profile and benchmark. Large
workloads can take between 4 and 12 hours. Small test work-
loads take several minutes.

GPU system: 3-4 hours to repeat all experiments.

e Publicly available?: Yes

e Code licenses (if publicly available)?: MIT License

e Archived (provide DOI)?: 10.5281/zenodo.3612698

A.3 Description
A.3.1 How delivered

Full AutoTM source code, benchmarks, and scripts used for this
work are available under the DOI: 10.5281/zenodo. 3612698. The
development version of the project is available on GitHub at https:
//github.com/darchr/AutoTM. The code is open sourced under the
MIT license.

A.3.2 Hardware dependencies

Optane DC: A 2 socket Cascade Lake server system with sup-
port for Optane DC PMM is required. Furthermore, this work uses
the (2-2-2) setup where each memory channel contains one DRAM
DIMM and one NVDIMM.

GPU: An Nvidia GPU is required. The GPU used in this paper
was an RTX 2080Ti.

A.3.3 Software dependencies

Both the CPU and GPU portions of this paper used Ubuntu
18.04 as the operating system. AutoTM requires Julia 1.2 or later,
Clang 6.0, and all the dependencies of the ngraph compiler. The
commercial Gurobi ILP solver versions 8 or 9 are necessary for full
reproducibility, but is not necessary for basic functionality.

If using on an Optane DC equipped system, Linux Kernel v4.2
or newer is required for direct-access (dax) filesystem support. If
using an Nvidia GPU system, CUDA 10 and cuDNN 7.6.

A full list can be viewed at http://arch.cs.ucdavis.edu/AutoTM/
dev/software/.

A.4 Installation

Detailed instructions are provided in /docs/src/installation.md
in the artifact directory or on GitHub at: http://arch.cs.ucdavis.edu/
AutoTM/dev/installation/. Furthermore, an example Dockerfile that
will successfully build the code for the GPU portion of the project
can be found in the ‘docker/‘ directory of the artifact or on Github
at https://github.com/darchr/AutoTM/blob/master/docker/gpu.

The Dockerfile serves to demonstrate the base functionality of
the artifact. For full results reproduction, the Gurobi ILP solver is
necessary as the open source Cbc solver that is installed automati-
cally as part of the build process is not powerful enough to solve the
larger ILP problems. However, since Gurobi is a commercial tool, a
license is required which does not allow the software to run inside
of a container. Hence, the artifact must be installed directly on
the test machine with the Gurobi software (see artifact installation
instructions). Note that Gurobi provides single machine academic
licenses for free.

A.5 Experiment Workflow

Workflow involves invoking top-level functions from the Julia REPL
(read-eval-print loop). The steps to reproduce Figures 7-12 of the
paper are provided in the documentation in the artifact repository:
http://arch.cs.ucdavis.edu/AutoTM/dev/workflow/.

A.6 Evaluation and expected result

For conventional networks, expected results are runtime predicted
by the ILP, actual runtime of the network, the DRAM limit passed
to the optimizer, the elapsed time for model optimization, the size
of data allocated to the near memory pool, and the size of data
allocated to the far memory pool.

Further metrics include statistics on the number and types of
Move nodes generated, the amount of data moved between memory
pools, and the pool assignments of all intermediate tensors.

A complete list of gathered metrics is available here: https://arch.
cs.ucdavis.edu/AutoTM/dev/results.

https://github.com/darchr/AutoTM
https://github.com/darchr/AutoTM
http://arch.cs.ucdavis.edu/AutoTM/dev/software/
http://arch.cs.ucdavis.edu/AutoTM/dev/software/
http://arch.cs.ucdavis.edu/AutoTM/dev/installation/
http://arch.cs.ucdavis.edu/AutoTM/dev/installation/
https://github.com/darchr/AutoTM/blob/master/docker/gpu
http://arch.cs.ucdavis.edu/AutoTM/dev/workflow/
https://arch.cs.ucdavis.edu/AutoTM/dev/results
https://arch.cs.ucdavis.edu/AutoTM/dev/results

A.7 Experiment Customization

The artifact contains several methods for customization. For the
CPU portion, the number of threads used for kernel implementa-
tions is configurable as well as the PMM to DRAM ratio.

The GPU code allows adjusting of the DRAM limit to accommo-
date GPUs with different amounts of device memory.

Additionally, creating and running new ngraph networks is rela-
tively straight forward.

These steps are discussed in detail in the Experiment Customiza-
tion section of the artifact documentation: http://arch.cs.ucdavis.
edu/AutoTM/dev/customization/.

A.8 Notes

The two portions of the paper (the PMM section and the GPU
section) can be performed separately. That is, the GPU portion can
be run without requiring access to a Optane DC equipped server.

The code provided runs under both conditions, but requires
slight configuration at setup. An interactive setup script as well
as instructions are provided at the top level of the code repository.
This script is executed in the root directory of the repository using

julia --color=yes setup.jl
Please feel free to file issues on the GitHub repository or contact
the authors directly.

A.9 Methodology

Submission, reviewing and badging methodology:
o http://cTuning.org/ae/submission-20190109.html
o http://cTuning.org/ae/reviewing-20190109.html
e https://www.acm.org/publications/policies/artifact-review-
badging

http://arch.cs.ucdavis.edu/AutoTM/dev/customization/
http://arch.cs.ucdavis.edu/AutoTM/dev/customization/
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Learning Training
	2.2 Intel Optane DC PMM

	3 AutoTM
	3.1 Memory Optimizer
	3.2 Objective Function
	3.3 DRAM Variables
	3.4 DRAM Constraints
	3.5 Kernel Configurations and Kernel Timing
	3.6 Tensor Movement Timing

	4 Implementation Details
	4.1 nGraph Compiler Backend
	4.2 Managing Memory Fragmentation
	4.3 Data Movement Implementation

	5 Evaluation Methodology
	5.1 System
	5.2 DNN Benchmarks
	5.3 Experiments

	6 Results
	6.1 Conventional Networks
	6.2 Comparison to a hardware DRAM cache
	6.3 Cost-Performance Analysis
	6.4 Understanding the ILP Solution
	6.5 Kernel Profiling Accuracy
	6.6 ILP Solution Times

	7 Extending AutoTM
	7.1 ILP Formulation Modifications
	7.2 Implementation
	7.3 Methodology
	7.4 GPU Results

	8 Related Work
	9 Conclusions
	10 Acknowledgements
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and expected result
	A.7 Experiment Customization
	A.8 Notes
	A.9 Methodology

