
Modeling HBM2 Memory Controller
Ayaz Akram∗, Maryam Babaie∗, Wendy Elsasser†, and Jason Lowe-Power∗

∗University of California, Davis, and †Rambus Inc.

gem5 Users’ Workshop associated with ISCA 2022

Fig. 1: 4H HBM2 stack (4 DRAM dies). CMD: shared
command bus, PC0 & PC1: 2 pseudo channels.

High bandwidth memory (HBM) provides much higher
bandwidth at lower power than standard DDR memories
(e.g., DDR4) and is thus considered necessary for emerging
applications. HBM2 is the latest standard of HBM with actual
market products (the JEDEC standard of HBM3 is final).

HBM2 1 comes as a 4H (4 DRAM dies) or 8H (8 DRAM
dies) stack, where each DRAM die has two physical channels
and a capacity of 1GB (8Gb). Each physical channel of
the DRAM die can act as a 128-bit interface (in HBM
legacy mode) or divide into two pseudo channels (in pseudo-
channel mode). HBM2 supports an independent address and
command bus, shared among both pseudo-channels. However,
both pseudo-channels have separate data buses. A 4H stack
of HBM2 (shown in Fig. 1) can provide 256GB/s bandwidth,
whereas a single physical channel contributes 32GB/s.

A. Limitations of current gem5 memory modeling

Currently, gem5 [1] provides minimal HBM support. The
existing HBM interface in gem5 [1] follows HBM1 specifica-
tions. Moreover, the interface does not offer asymmetric timing
parameters for reads and writes (the case in HBM2).

The most critical limitation of gem5 is that it supports only
a single DRAM interface per memory controller, i.e., it cannot
support HBM2 in pseudo-channel mode. Using an independent
controller per pseudo channel can lose the impact of the shared
command bus and any impact of the shared queue for both
pseudo channels (as in some real HBM2 devices). The default
memory controller of gem5 allows using DRAM and NVM
interfaces together, but they have to share a data bus.

1https://www.anandtech.com/show/9969/jedec-publishes-hbm2-specification

All_reads All_writes 67%_reads
0

10

20

30

Ba
nd

wi
dt

h 
(G

B/
s) Linear Random

Fig. 2: Bandwidth of a physical channel (two pseudo channels)
of HBM2 controlled by a single gem5 memory controller

B. Enabling HBM2 support in gem5

We tried to overcome the above-mentioned issues to enable
pseudo channel mode HBM2 in gem5. We relied on JEDEC
documentation and other simulation tools to configure an
HBM2 interface in gem5. We updated the DRAM interface
to support separate tRCD and tCL for reads and writes.

Most importantly, we added an HBM-specific memory
controller capable of controlling two DRAM interfaces and
supporting the use of a shared or partitioned (among pseudo
channels) read and write queue. Our address mapping policy
interleaves the memory requests across pseudo channels at a
granularity of 64B (two 32B atoms for a 64B cache line go
to the same pseudo channel). gem5 had added the support for
multi-cycle commands and checks for command bandwidth in
the gem5-20 release. We extended this support to check row
and column command bandwidth separately. We fixed some
minor but essential bugs on bandwidth verification checks.

We observed an extra hit on bandwidth in the read/write traf-
fic mix and, therefore, implemented a min_reads_per_switch
similar to min_writes_per_switch (already implemented in
gem5) to ensure a lower number of read/write turnarounds.

C. Evaluation

We performed traffic generator-based studies using different
linear/random read/write traffic combinations to validate the
HBM2 pseudo channel model. Figure 2 presents the bandwidth
numbers for a single physical HBM2 channel (made of two
pseudo-channels), controlled by an HBM controller (peak
theoretical bandwidth is 32GB/s). We also compared these per-
formance numbers with the bandwidth numbers from another
memory simulator DRAMSys and found that our numbers are
comparable to that of DRAMSys. We will discuss our changes
in detail at the gem5 workshop and plan on presenting more
detailed results which validate the newly added HBM model.

https://www.anandtech.com/show/9969/jedec-publishes-hbm2-specification


D. Refactoring gem5 memory controller

We have refactored gem5’s default memory controller to
enable its easy extension to different types of memory con-
trollers. The baseline default memory controller MemCtrl sup-
ports single memory interface. HBMCtrl extends the MemCtrl
and implement the above mentioned features with two memory
interfaces. MemCtrl can also serve as a base to implement
other types of memory controllers.

REFERENCES

[1] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. An-
dreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152,
2020.


	Limitations of current gem5 memory modeling
	Enabling HBM2 support in gem5
	Evaluation
	Refactoring gem5 memory controller
	References

