Position Paper: A Case for Exposing Extra-Architectural State in
the ISA

Jason Lowe-Power
University of California, Davis
Computer Science
jlowepower@ucdavis.edu

Samuel T. King
University of California, Davis
Computer Science
kingst@ucdavis.edu

ABSTRACT

The recent Meltdown and Spectre attacks took the community by
surprise. Rather than exploiting an incorrect implementation of
the ISA, these attacks leverage the undocumented implementation-
specific speculation behavior of high-performance microarchitec-
tures to affect the extra-architectural state of the machine (e.g.,
caches).

Inspired by these novel speculation-based attacks, we argue it is
time to rethink the traditional ISA layers. Programmers and security
professionals need a framework to reason about the effects of spec-
ulation and other microarchitectural performance optimizations.
We propose judiciously extending the ISA to include the extra-
architectural state so that an ISA implementation either completely
squashes all system state changes caused by mis-speculated instruc-
tions or the potential changes are rigorously documented. We hope
this new framework will give architects and security researchers
tools to reduce the likelihood of future surprise vulnerabilities.

CCS CONCEPTS

« Security and privacy — Hardware security implementa-
tion; - Computer systems organization — Superscalar archi-
tectures;

KEYWORDS

speculation, security, ISA

ACM Reference Format:

Jason Lowe-Power, Venkatesh Akella, Matthew K. Farrens, Samuel T. King,
and Christopher J. Nitta. 2018. Position Paper: A Case for Exposing Extra-
Architectural State in the ISA. In HASP ’18: Hardware and Architectural
Support for Security and Privacy, June 2, 2018, Los Angeles, CA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3214292.3214300

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HASP ’18, June 2, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6500-0/18/06....$15.00
https://doi.org/10.1145/3214292.3214300

Venkatesh Akella
University of California, Davis
Electrical and Computer Engineering
akella@ucdavis.edu

Matthew K. Farrens
University of California, Davis
Computer Science
farrens@cs.ucdavis.edu

Christopher J. Nitta
University of California, Davis
Computer Science
cjnitta@ucdavis.edu

1 INTRODUCTION

Security has become a first-order design constraint. The software
development community has already recognized this, and it is now
clear computer architecture must also design systems with security
in mind. However, this requires revisiting decades-old hardware
development patterns.

Many of the architectural innovations that have driven the in-
crease in compute capability for the past 50 years were designed
ignoring their security implications. For instance, caches [3, 21],
branch predictors [4, 11], and even pipelines [10] can be used as
communication side-channels, and recently Meltdown [19] and
Spectre [18] showed how attackers can leverage processors’ spec-
ulative execution hardware to induce applications to leak secret
information, without even needing to exploit any “bugs” in the
hardware. Meltdown and Spectre cause instructions to execute that
should not execute. However, the architectural state of these pro-
cessors is never incorrect by today’s definition of the ISA. Instead,
these transiently executed instructions affect structures outside of
the current definition of the architectural state causing information
leakage.

There has been significant work providing hardware support for
making software more secure (e.g., Intel TXT and SGX [7, 12], ARM
TrustZone [9], and many others), providing software support for
using insecure hardware (e.g., microcode changes [1] and runtime
support [15, 16]), and closing hardware vulnerabilities (e.g., side-
channels [10, 28], network processors [29], and information flow
tracking [23, 24]). Still, computer architects design for performance

Common, unchanging interface
Architectural state:

I OS/Compiler/App. l * memory data
* interrupts
* registers

I ISA l « |/0

I Microarchitecture l Changes with hardware,
\ "Invisible" to layers above, and
l strictly implements the ISA

Extra-architectural state:
* cached addresses
* branch predictor
* branch target buffer
* physical registers
 physical->logical reg. map

I Hardware

Figure 1: Architectural and extra-architectural state

https://doi.org/10.1145/3214292.3214300
https://doi.org/10.1145/3214292.3214300

HASP *18, June 2, 2018, Los Angeles, CA, USA

first and rarely consider the security implications of performance
optimizations, since it is unlikely that consumers will be happy
if they are told they must give up performance enhancements in
order to make their machines more secure. Recent events have
demonstrated that this has to change, and that architects must
address this issue immediately.

Figure 1 shows the incredibly successful layered architecture of
modern systems. This approach allows software developers and
hardware engineers to innovate separately at a much faster rate
than they could if they synchronized at every step. However, these
recent attacks have shown some of the “invisible” optimizations in
the microarchitecture layer are in fact visible and can be exploited.

By strictly separating the programmers from the hardware im-
plementation, they lose visibility into potential side-effects of in-
struction execution. The architectural “state” of the machine has
long been defined as all the information necessary to correctly save
and restart a process. Unfortunately, this definition is inadequate
from a security standpoint. Ideally, for a given hardware imple-
mentation of an ISA, a security researcher needs to understand
all the changes to any hardware structure shared by one or more
processes. Currently, there is no way for security researchers to do
this because many structures (caches, buffers, etc.) are not part of
the architectural state. Thus, there needs to be a better framework
to enable reasoning about potential security vulnerabilities.

We argue it is time to rethink the definition of the ISA to include
both the architectural state and the extra-architectural state (see
Figure 1). This will require the hardware manufacturers to either
explicitly identify all of the various structures in the system that
may be affected by a particular instruction or ensure the instruc-
tion does not modify any structures in an undefined way. Security
experts and programmers can then use this information to design
safer and more secure applications.

In this paper, we focus on speculation-based attacks like Melt-
down and Spectre as a case study. Current architectures use three
techniques to ensure speculation does not affect the architectural
state: preventing, undoing, and specifying speculative architectural
state changes. We discuss these techniques, examples of extending
these ideas to the extra-architectural state, and potential changes to
ISA definitions to reduce the likelihood of future speculation-based
attacks.

2 SPECULATION-BASED ATTACKS

Meltdown and Spectre induce the processor to execute transient
instructions — instructions that execute during mis-speculation and
are then invalidated/squashed — which affect system state that is not
part of the architectural definition. We define the system state that
is not part of the architectural definition as the extra-architectural
state (Figure 1). The extra-architectural state includes any structure
that is potentially visible to other processes (addresses present in
the cache, the branch predictor state, etc.).

In the case of Meltdown and Spectre, the transient instructions
cause changes to the addresses in the L1 cache. The addresses held
in the cache are not part of the architectural state, since caches
are logically invisible to the programmer. However, changes to the
extra-architectural state are detectable by an attacker because the
cache state is shared between multiple actors.

J. Lowe-Power et al.

For these extra-architectural state attacks to be successful two
things must occur:

(1) The attacker causes a modification to the extra-architectural
state and this modification is based on a secret.
(2) The attacker can perceive the extra-architectural state change.

The code below shows an example code snippet that is vulnerable
to the Spectre attack [18], specifically the bounds check bypass
attack (Spectre-V1).

if (x < arrayl_size)
array2[arrayl[x] « 512];

In this example, the branch predictor is primed to assume the
branch is not taken (x < arrayl_size is true). Then, the attacker
uses a specially crafted x, the branch is predicted not taken, and
the next line (array2[array1[x] * 512];) is transiently exe-
cuted, reading a value outside of the bounds of array1 and ac-
cessing memory (array2[...]) based on the secret data value.
While the speculation hardware eventually correctly recovers and
squashes the transient instructions, they have already affected the
extra-architectural state. Specifically, the address in array? that is
evicted from the cache depends on the value of the out-of-bounds
accesses, leaking secret information.

This attack meets the two requirements defined above. First, the
attacker causes a modification to the extra-architectural state (i.e.,
the addresses in the L1 cache). Then, this change is perceived by
the attacker by using a flush-and-probe technique to detect the
currently cached address.

Meltdown similarly leverages the transient instructions that ex-
ecute under a mis-speculation, although it exploits the fact that
some speculative implementations delay memory address permis-
sion checks and allow transient instructions to access privileged
addresses.

Proposed mitigations

Mitigations for Meltdown and Spectre were announced at the same
time as the vulnerabilities were made public. Kernel page table
isolation (KPTI) mitigates meltdown by separating the kernel page
table from the user-mode page table [14]. The x86 ISA defines that
it is illegal to speculate past a write to the page table pointer (CR3).
Thus, a correct implementation of the ISA will prevent any specu-
lative state change from loads to a higher privilege level blocking
the Meltdown behavior.

There are two documented versions of Spectre with different
mitigation strategies. First, to mitigate the bound check bypass
attack described above (Spectre-V1), Intel, ARM, and AMD have
proposed adding new instructions or changing current instructions
to ensure the code after the branch does not execute speculatively [1,
2, 13]. To mitigate Spectre-V1, programmers (possibly with the help
of static analysis techniques) must insert an LFENCE instruction after
each bounds check to prevent any following instructions from being
speculatively executed. This is an example of exposing the extra-
architectural state to the ISA and allowing systems programmers
and security experts to reason about how to prevent attacks.

Second, to mitigate the branch target injection attack (Spectre-
V2), Intel and ARM have proposed adding instructions to flush the

Position Paper: A Case for Exposing Extra-Architectural State in the ISA

branch target buffer (BTB) [1, 13]. Then, the system can proac-
tively flush the BTB if it believes there is a chance to attack the
program.!. Again, this mitigation technique exposes some of the
extra-architectural state to the systems-level programmer by adding
new instructions and new machine-specific configuration registers.
There are two new versions of these attacks, MeltdownPrime and
SpectrePrime [25] that use cache coherence messages as the side
channel instead of the shared L1 data cache. The current proposed
mitigation techniques also apply to these versions of the speculation
attacks since the mitigation techniques focuses on limiting when
the processor can speculate, not on the specific side channel used.
These mitigations allow low-level software developers (e.g., sys-
tems and compiler writers) to modify their software to protect it
from Meltdown and Spectre. However, the behavior that was trig-
gered by these attacks is still not formally documented. There is
no reason to think there are not other, similar, speculation-based
attacks that may be found in the future. For example, might it be
possible to trick the prefetcher into reading data for an attacker?
As long as instructions change the extra-architectural state in ways
that are undocumented but observable, vulnerabilities will exist.

3 RETHINKING THE ISA

Out of order superscalar architectures employ a variety of tech-
niques to prevent possible incorrect program execution that can
arise from speculation. These techniques fall three main categories.

(1) Prevent speculative state change. Example: Stores to mem-
ory. Once the processor issues a write to memory, it may be
prohibitively difficult for the write to be undone. Thus, all
speculative stores are inserted into a store queue and are not
issued to memory until the store instruction is committed (i.e.,
is not speculative).

(2) Undo speculative state change. Example: Register writes.
Most speculative processors use register renaming to reduce
data hazards. Used in conjunction with a reorder-buffer (ROB),
this allows the processor to undo any register writes that occur
during a mis-speculation.

(3) Specify speculative state change. Example: Relaxed consis-
tency. There are cases where performance can be significantly
improved if the non-speculative semantics of the application
are relaxed. One example is the memory consistency model
that specifies the possible interleavings of memory accesses
from multiple processors. By allowing a non-sequential inter-
leaving, processors can use load and store buffers, significantly
increasing performance.

We argue these techniques must be extended to cover both the ar-
chitectural state and the extra-architectural state. Below, we discuss
an example of how to accomplish this goal.

! There are software techniques to isolate indirect branches from speculation proposed
as well (e.g., “retpoline” [27]).

HASP ’18,

June 2, 2018, Los Angeles, CA, USA

Relative Performance
e o o
N S o

o
=)

ks @ \“C‘«‘?\& &
vl\ 1’\ \“ S‘& \OQ’;—;‘

\>

SPECint | SPECfloat | g Al speculation disabled
I Speculation disabled for loads

\‘\ ")"’)\‘\ '50
“A \?9 \‘\2‘\\}(’ \‘\\\’Q\ '& \‘\K\o@
(,« N

<<,
V\\

Figure 2: Performance for disabling all speculation and
disabling speculative loads compared to full speculation

(higher is better).

LsQ

Speculative Ioadsl TData

Cache

LSQ

Speculative Ioadsl TData

Cache

Speculative Insert on Speculative l Insert on
Miss to memoryl Tresponse Miss to memory commit
Speculative Speculative

Load Buffer Load Buffer

Non-speculative
Send on commit

(a) Miss-side SLB

Speculative
Response

(b) Insert-side SLB

Figure 3: Two possible speculative load buffer designs.

3.1 Prevent speculative state change

3.1.1 Straw man: Disabling speculation. The simplest way to
bring the ISA definition in line with the microarchitecture imple-
mentation is to remove speculation. We performed a preliminary
simulation to estimate the performance effects of removing spec-
ulation from modern out-of-order processors. We used the gem5
architecture simulator [8] and ran each SPEC workload for 500
million instructions after warming up for 200 million instructions.

Figure 2 shows the performance hit for disabling speculation is
dramatic. We disabled speculation by marking every instruction as
serializing which forces all previous instructions to commit before
issuing the current instruction. Disabling speculation in general
causes an average 17x performance hit for the SPECfloat workloads
and a 10X performance reduction for SPECint.

We also investigated disabling speculation only for load instruc-
tions. This would neutralize the Meltdown and Spectre attacks,
but may not be strong enough to eliminate all speculation-based
attacks. Disabling speculation only for loads has less of an impact
on performance, although we still see on average a 4.9x slowdown
for SPECfloat and a 3.3x slowdown for SPECint.

3.1.2 Hardware-only change: Speculative load buffer. Figure 3
shows two systems with the proposed speculative load buffer. The
SLB on the miss side of the cache (Figure 3a) prevents speculative
loads from affecting the extra-architectural state of the cache. Any

HASP *18, June 2, 2018, Los Angeles, CA, USA

loads that miss in the cache are not allowed to access the rest of
the memory system until they are no longer speculative, similar
to a store buffer. The SLB can be placed behind the cache and is
only used on cache misses since cache hits do not change the extra-
architectural state of the cache (i.e., the addresses currently present
in the cache)?.

We present the SLB as an example of a hardware change that
eliminates speculative extra-architectural state changes. Unfortu-
nately, while the SLB may increase security transparently to the
programmer, like eliminating speculation, it likely will cause perfor-
mance degradation. We are currently evaluating the performance
impact of the SLB.

3.2 Undo speculative state change

A higher performing solution to Meltdown and Spectre than dis-
abling speculation or the miss-side SLB is to ensure that the extra-
architecture state change caused by loads is undone if the load is
mis-speculated. Traditionally, architects have not worried about the
impact of speculative loads since the state is only affected when the
value is written into an architectural register, and speculative loads
can be undone by simply squashing the register write. However,
loads affect the cache state, which is part of the extra-architecture
state. Therefore, we also need to have the ability to “undo” the
cache insertions.

Figure 3b shows an insert-side SLB. The insert-side SLB logically
extends the idea of the reorder buffer (ROB) into the cache. This
speculative load buffer is modeled after the prefetch buffer that is
already part of many cache designs. For speculative loads, instead
of inserting new lines into the cache as soon memory responds,
the data is inserted into the speculative load buffer. Only when the
instruction commits is it allowed to move into the cache. We can
rollback mis-speculated loads by invalidating entries in the specu-
lative load buffer whenever the corresponding entry is invalidated
in the ROB. In order to ensure that the speculative load buffer is
not also part of the extra-architectural state, it must not be shared
between processes. To cover lower level caches and cache coher-
ence side channels, we can either further extend this idea, disallow
sharing of lower level caches (e.g., via cache partitioning), or create
a special prefetch-like memory request that does not invalidate
other cache’s cache lines.

The speculative load buffer does not eliminate all cache side
channels, but it is an example of how extending the ISA definition
to include extra-architectural state allows designers to reason about
ways to reduce the vulnerability space.

3.3 Specify speculative state change

We believe a more general approach to closing these speculative
execution vulnerabilities is to have the ISA explicitly specify the
effects of an instruction on both the architectural state and the
extra-architectural state. This includes the possible instruction in-
terleaving allowed by a specific microarchitectural implementation
of speculation and any effects on shared structures (caches, branch
predictors, etc.).

2In this design, speculative loads could affect the LRU information in the cache state.
To prevent this extra-architectural state change, the LRU information should only be
updated when the load is no longer speculative.

J. Lowe-Power et al.

The state of ISAs today is similar in spirit to the state of ISAs
before formal memory consistency models. For many years, ISAs
used prose and details of the microarchitectural implementation
to incompletely describe their memory model [22]. However, ISA
creators have realized that formality is important and have since
provided formal memory models [26].

Similarly, we believe that speculation should be formally speci-
fied. Like the inflection point of going from uniprocessors to mul-
tiprocessors, we are at an inflection point today where security is
now a first-order design constraint. Not all applications require rig-
orous security guarantees, but for the applications that do require
it, the ISA should provide all of the information necessary.

Manufacturers are moving in this direction in an ad hoc fash-
ion. For instance, Intel’s [1], AMD’s [2], and ARM’s [13] proposed
response to Spectre is to implement new instructions which limit
speculation on the surrounding instructions. These instructions
either cause explicit serialization of the out-of-order pipeline or
explicitly flush certain structures (e.g., the branch target buffer) to
force non-speculative program execution. This is currently specified
using prose and requires understanding the underlying microarchi-
tectural implementation.

The main challenge in exposing the extra-architectural state
in the ISA is providing the right interface between the hardware
and the programmer. We want an interface that is general. A gen-
eral interface allows implementers of the ISA to innovate, enables
compatibility between different hardware generations, and may
simplify programming. However, we also want an interface which
contains enough detail so security-minded applications are not
required to put a fence between every single instruction.

It is not obvious how to apply these contradictory requirements
to extra-architectural state. For instance, it is likely too specific for
the ISA to specify the number of sets and ways of the cache. Instead,
ISAs could use a model like the value in cache lifetime (ViCL) which
abstracts away the specific cache design and only represents cache
insertions and evictions [20]. ViCL is currently used for validating
memory consistency models and was used to discover new types
of speculation attacks [25]. Similar models may be appropriate for
other caching structures that are part of the extra-architectural
state (e.g., branch predictor).

4 RETHINKING THE SYSTEM

When we rethink the ISA design, we must also rethink the rest
of the system’s software including the operation system and the
compiler. There are many possible ways to combine the three tech-
niques described above when extending the ISA to cover the extra-
architectural state and these combinations result in different system
design tradeoffs. We can continue the traditional architecture tech-
nique of transparency by restricting or undoing speculative state
change which requires minimal system changes to provide security.
Or, we can potentially use a simpler hardware implementation and
push security up the stack to the system software and compiler de-
velopers (e.g., Singularity [17] and the Factored Operating System
(fos) [30]). Pushing security up the stack requires specifying the
potential extra-architectural state changes so that these developers
can reason about their software. We are currently investigating

Position Paper: A Case for Exposing Extra-Architectural State in the ISA

combinations of these approaches and how they interact with hard-
ware, software, operating system, and compiler design.

Not all applications have strict security requirements and appli-
cations with more lax requirements should be able to use all of the
potential performance of speculative architectures. One potential
approach is for the ISA to expose multiple security levels to the
operating system to use for different applications. This could be
implemented by adding more security rings to the processor. Cur-
rently, most systems use three levels of security rings: user-mode,
kernel-mode, and hypervisor-mode. Another ring could be added
for applications that process secret data, and the hardware would
guarantee that there is no speculative state change while in this ring
(by disabling speculation or disabling caches while the processor is
executing in the “secret” ring, for example). This would potentially
limit the most negative performance impacts to applications that
do not have rigorous security requirements.

Specifying the changes in the extra-architectural state could con-
strain future hardware designs. We believe there is a middle ground
where hardware designers can hide implementation some details
by undoing all speculative changes to the extra-architectural state
(e.g., by implementing a speculative load buffer) and specify other
changes (e.g., speculation fences). Finding the right interface that
allows space for hardware designers to innovate and system devel-
opers to reason about security is an exciting research challenge.

5 FUTURE RESEARCH DIRECTIONS AND
CONCLUSIONS

In this paper we have proposed a framework which will allow ar-
chitects, system software writers, and security experts to better
design and mitigate speculation-based attacks like Meltdown and
Spectre. We discussed that enforcing only “functional correctness”
is not enough in today’s security-first era. We believe ISAs need to
expand the definition of “correctness” to include the entire state of
the system by specifying the speculative state changes to both the
architectural and extra-architectural state. This will allow program-
mers and security professionals to reason about when applications
should and should not allow speculation.

The main research questions we are pursing are how to specify
speculative state change and what changes to specify. By extending
the ISA to include more state, there is a significant burden placed
on the programmer. On the other hand, using the approach of
preventing/undoing all changes in the hardware will increase design
complexity and could cause performance regressions.

We are currently investigating the tradeoffs between software
complexity, hardware complexity, performance, and vulnerability
to choose which speculative state changes to allow, to undo, and
to specify. We can leverage prior work on memory consistency
models [5] as a starting point for specifying speculative state change.
Models like sequential consistency for data-race free programs [6]
that have simple semantics in the common case but allow for many
performance optimizations are a good example of finding the right
tradeoff between complexity and expressiveness.

The separation of the architecture definition (ISA) from the mi-
croarchitectural implementation allowed families of machines to
be developed, and was a tremendous commercial success. How-
ever, given the increasing importance of security, it may be time

HASP ’18, June 2, 2018, Los Angeles, CA, USA

to rethink the traditional hardware-software interface. If the total
behavior of the processor is more rigorously described, security
researchers have a far better chance to catch future vulnerabilities
before they make it into products.

6 ACKNOWLEDGMENTS

We thank Lena Olson, Swapnil Haria, and the anonymous reviewers
for providing feedback on this paper.

REFERENCES

[1] 2018. Intel Analysis of Speculative Execution Side Channels. White Paper. In-
tel. https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf.

2018. SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD

PROCESSORS. ~ White Paper. AMD. https://developer.amd.com/wp-

content/resources/Managing-Speculation-on-AMD-Processors.pdf.

[3] Onur Aciigmez. 2007. Yet Another MicroArchitectural Attack:: Exploiting I-Cache.
In Proceedings of the 2007 ACM Workshop on Computer Security Architecture (CSAW
’07). ACM, New York, NY, USA, 11-18. https://doi.org/10.1145/1314466.1314469

[4] Onur Aciicmez, Cetin Kaya Kog, and Jean-Pierre Seifert. 2007. On the Power of
Simple Branch Prediction Analysis. In Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications Security (ASIACCS °07). ACM, New
York, NY, USA, 312-320. https://doi.org/10.1145/1229285.1266999

[5] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency
models: a tutorial. Computer 29, 12 (Dec 1996), 66-76. https://doi.org/10.1109/2.
546611

[6] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering—a New Definition. In

Proceedings of the 17th Annual International Symposium on Computer Architecture

(ISCA ’90). ACM, New York, NY, USA, 2-14. https://doi.org/10.1145/325164.

325100

Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. In-

novative Technology for CPU Based Attestation and Sealing. White Paper. Intel

Corporation.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. SSIGARCH Comput. Archit.

News 39, 2 (Aug. 2011), 1-7. https://doi.org/10.1145/2024716.2024718

[9] Rob Coombs. 2015. Securing the Future of Authentication with ARM TrustZone-
based Trusted Execution Environment and Fast Identity Online (FIDO). Technical
Report. https://www.arm.com/files/pdf/TrustZone-and-FIDO-white-paper.pdf.

[10] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012.

Side-channel Vulnerability Factor: A Metric for Measuring Information Leak-

age. In Proceedings of the 39th Annual International Symposium on Computer

Architecture (ISCA °12). IEEE Computer Society, Washington, DC, USA, 106-117.

http://dl.acm.org/citation.cfm?id=2337159.2337172

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump over

ASLR: Attacking Branch Predictors to Bypass ASLR. In The 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-49). IEEE Press, Piscataway,

NJ, USA, Article 40, 13 pages. http://dlLacm.org/citation.cfm?id=3195638.3195686

David Grawrock. 2009. Dynamics of a Trusted Platform: A Building Block Approach

(1st ed.). Intel Press.

Richard Grisenthwaite. 2018. Cache Speculation Side-channels. White Paper

Version 1.1. arm. https://developer.arm.com/support/security-update/download-

the-whitepaper.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice,

and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering Se-

cure Software and Systems, Eric Bodden, Mathias Payer, and Elias Athanasopoulos

(Eds.). Springer International Publishing, Cham, 161-176.

[15] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith. 2010. Over-
coming an Untrusted Computing Base: Detecting and Removing Malicious Hard-
ware Automatically. In 2010 IEEE Symposium on Security and Privacy. 159-172.
https://doi.org/10.1109/SP.2010.18

[16] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M. Smith. 2015.
SPECS: A Lightweight Runtime Mechanism for Protecting Software from Security-
Critical Processor Bugs. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’15). ACM, New York, NY, USA, 517-529. https://doi.org/10.1145/2694344.2694366

[17] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the Software

Stack. SIGOPS Oper. Syst. Rev. 41, 2 (April 2007), 37-49. https://doi.org/10.1145/

1243418.1243424

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

[2

[7

8

[11

[12

[13

[14

=
&

https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1145/1229285.1266999
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/2024716.2024718
http://dl.acm.org/citation.cfm?id=2337159.2337172
http://dl.acm.org/citation.cfm?id=3195638.3195686
https://doi.org/10.1109/SP.2010.18
https://doi.org/10.1145/2694344.2694366
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1243418.1243424

HASP *18, June 2, 2018, Los Angeles, CA, USA

[19]

[20]

[21]

[22

[23

[24]

2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207

Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
2015. CCICheck: Using &Micro;Hb Graphs to Verify the Coherence-consistency
Interface. In Proceedings of the 48th International Symposium on Microarchitecture
(MICRO-48). ACM, New York, NY, USA, 26-37. https://doi.org/10.1145/2830772.
2830782

D Page. 2003. Defending against cache-based side-channel attacks. Information Se-
curity Technical Report 8, 1 (2003), 30 — 44. https://doi.org/10.1016/S1363-4127(03)
00104-3

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. X86-TSO: A Rigorous and Usable Programmer’s Model
for x86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89-97. https:
//doi.org/10.1145/1785414.1785443

G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004. Secure
Program Execution via Dynamic Information Flow Tracking. In Proceedings
of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XI). ACM, New York, NY, USA, 85-96.
https://doi.org/10.1145/1024393.1024404

Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. 2009. Complete Information Flow Tracking from
the Gates Up. In Proceedings of the 14th International Conference on Architectural

[25

[26

[28

[29

[30]

J. Lowe-Power et al.

Support for Programming Languages and Operating Systems (ASPLOS XIV). ACM,
New York, NY, USA, 109-120. https://doi.org/10.1145/1508244.1508258
Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. MeltdownPrime
and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols. ArXiv e-prints (Feb. 2018). arXiv:cs.CR/1802.03802
Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Mar-
garet Martonosi. 2017. TriCheck: Memory Model Verification at the Trisec-
tion of Software, Hardware, and ISA. In Proceedings of the Twenty-Second In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’17). ACM, New York, NY, USA, 119-133.
https://doi.org/10.1145/3037697.3037719

Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/fags/answer/7625886

Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA °07). ACM, New York,
NY, USA, 494-505. https://doi.org/10.1145/1250662.1250723

Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan Kastner,
Frederic T. Chong, and Timothy Sherwood. 2013. SurfNoC: A Low Latency and
Provably Non-interfering Approach to Secure Networks-on-chip. In Proceedings
of the 40th Annual International Symposium on Computer Architecture (ISCA ’13).
ACM, New York, NY, USA, 583-594. https://doi.org/10.1145/2485922.2485972
David Wentzlaff and Anant Agarwal. 2009. Factored Operating Systems (Fos):
The Case for a Scalable Operating System for Multicores. SIGOPS Oper. Syst. Rev.
43, 2 (April 2009), 76-85. https://doi.org/10.1145/1531793.1531805

http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01207
https://doi.org/10.1145/2830772.2830782
https://doi.org/10.1145/2830772.2830782
https://doi.org/10.1016/S1363-4127(03)00104-3
https://doi.org/10.1016/S1363-4127(03)00104-3
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1145/1508244.1508258
http://arxiv.org/abs/cs.CR/1802.03802
https://doi.org/10.1145/3037697.3037719
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/2485922.2485972
https://doi.org/10.1145/1531793.1531805

	Abstract
	1 Introduction
	2 Speculation-based attacks
	3 Rethinking the ISA
	3.1 Prevent speculative state change
	3.2 Undo speculative state change
	3.3 Specify speculative state change

	4 Rethinking the system
	5 Future research directions and conclusions
	6 Acknowledgments
	References

