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Abstract—In this paper we propose a microarchitectural
technique called GPU Constant Average Power Processing
(GPU-CAPP) that improves the power utilization of power
provisioning-limited systems by using provisioned power as
much as possible to accelerate computation on parallel work-
loads. GPU-CAPP uses a flexible, decentralized control to
ensure fast response times and the scalability required for
increasingly parallel GPU designs. We use GPGPU-Sim and
GPUWattch to simulate GPU-CAPP and evaluate its capabili-
ties on a subset of the Rodinia benchmark suite. Overall, GPU-
CAPP enables speedup by an average of 26% and 12% over
equivalent fixed frequency systems at two power targets.

Keywords-power capping; GPU; power management; perfor-
mance maximization;

I. INTRODUCTION

With explosive growth in data in every discipline there has
been an insatiable demand for high performance computing
in both traditional scientific applications and large scale data
analytics. GPUs have become an integral part of high perfor-
mance nodes because of their ability to harness scalable data
parallelism in a wide range of applications. However, power
consumption continues to be a serious concern as we march
towards exascale computing systems. As Barosso et. al [2]
point out, managing power in high performance computing
facility is challenging because of a variety of reasons - not
only is the capital cost of provisioning power quite substan-
tial but the operating costs of a high performance computing
facility are also dominated by the cost of power. In addition,
researchers have found that computation is quite bursty in
nature - periods of high activity followed by periods of
inactivity [13]. Also, power is not proportional to the actual
activity in the processors because even if a processor is idle
(i.e., not turned off) its power consumption could be quite
significant. Power capping and power shifting [17], [23],
[3], where power is managed as a dynamic resource that
is allocated to different clusters of compute nodes (racks)
based on the characteristics of the workload and projected
demand, so that the servers are operating at optimal power
efficiency and minimizing the power cost is an important
technique to address the power management challenges in a
high performance computing facility.

Broadly speaking the objective of this work is to extend
power capping to the chip-level, specifically to GPUs and

to maximize the performance that can be achieved with
a given power budget. The goal is for the average power
to be as close to the allowable peak power as possible.
One way to accomplish this is with over provisioning as
shown by Pakti et. al [20]. While this will successfully use
some of the excess available provisioned power, it will also
cost significantly more due to the increased hardware costs.
Provisioning power is a significant cost at all levels from
the datacenter down to a single chip. Thus, our aim is to
improve the utilization of this provisioned power at the level
of a single GPU.

The issue of using less than the available provisioned
power is important in the case of GPUs. Figure 1 shows
the total power over time on a simulated GTX 480 running
the LU Decomposition benchmark from the Rodinia suite
running at the nominal frequency of 700 MHz. The peak
power of a GPU workload exceeds the average power by
almost 4X! If the supercomputer was provisioned based on
the aggregate peak power across all GPUs, there would be
a large amount of wasted power provisioning. To simplify
the description of this excess provisioned power over time,
we call the percentage of the available power over time that
the system uses the Provisioned Power Efficiency (PPE) as
shown below. Provisioned Power Efficiency is the average
power divided by the maximum provisioned available power.

PPE =
AveragePower

SystemProvisionedPower
(1)

Having a low provisioned power efficiency leads directly
to lost money in designing the high performance computing
system because it needs to accommodate the maximum
power draw. Figure 2 shows the provisioned power effi-
ciency for our baseline GPU running at its peak frequency of
700 MHz. This figure shows that on average most workloads
use less than 50% of the provisioned power. The reason for
this inefficiency is that the system must be configured for
the worst of the worst case across all time for all workloads.

Our goal is to use very fine-grained dynamic frequency
and voltage scaling (DVFS) at the GPU chip level to smooth
the curve in Figure 1 and bring the average power and
peak power together increasing the PPE. At the chip level
level, more power management techniques are available to
modify the peak and average power draw. Additionally, the
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Figure 1: Nomalized power over time of 300 MHz and 700
MHz GPU running LU Decomposition.

provisioned power at the chip level is also a significant
portion of the cost of the chip due to limited specifications
of the voltage regulator and the number of pins used for
power supply. By increasing the chip-level PPE the entire
datacenter’s PPE will also increase since designers can
reduce the required guardbands.

Intel’s technique called Running Average Power Limit
(RAPL) attempts to keep the system at a power limit over a
given period of time but has several key issues that prevent
its usage in GPUs [7]. RAPL uses a centralized scheme
where subcomponent (such as GPU streaming multipro-
cessors) metrics are centralized in a single controller and
all decisions regarding power management are made there.
As the number of subcomponents scales, RAPL becomes
untenable due to the amount of information that must reach
the central controller from all of the subcomponents. The
only way for all of that information to reach the controller
is either through some kind of bus or through separate
wires. A bus would quickly become congested with all
of the simultaneous access requests from many streaming
multiprocessors (SMs), and using dedicated wires would
require significant amounts of area, power and specialized
routing. Alternatively, system-level techniques operating in
software could control the system’s power draw. These
techniques cannot react quickly enough (˜100µs) to fast
spikes in power and can violate the provisioned power limit
as seen in Figure 1.

To improve the provisioned power efficiency, we propose
GPU Constant Average Power Processing (GPU-CAPP).
GPU-CAPP overcomes the bandwidth and latency limita-
tions of RAPL and other DVFS implementations by using
the power delivery network for global communication. GPU-
CAPP controls the overall power usage of the chip through
a two-level hardware implementation. The first level occurs
at the on-chip voltage regulator and senses the current
power usage and controls the global voltage to maximize
the provisioned power efficiency. The second level occurs
at each SM and uses the global voltage along with local
metrics to assign voltage and frequency settings to the SM
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Figure 2: Optimal provisioned power utilization at 700 MHz
across several rodinia benchmarks.

to maximize its power efficiency.
We implemented GPU-CAPP using a validated GPU

power model (GPUWattch [18]) and evaluated a large design
space for potential local controllers. We found the best local
controller should use a dynamic active warp target based on
the current power usage to control the local voltage and fre-
quency of each GPU SM. We evaluated GPU-CAPP across
a subset of the Rodinia benchmark suite at two different
power targets. We find that if the system is provisioned for
a low power target (23 W), the speedup gained by GPU-
CAPP over a similarly provisioned fixed frequency system
is 26.5%. If the system is provisioned for a mid-range power
target (43 W), the average speedup of GPU-CAPP is 12%.
GPU-CAPP improves the PPE from 61% to 88.8% at 23 W
and from 54.4% to 65.6% at 43 W. These results show that
GPU-CAPP allows the user to get a higher performance for
the same cost of system provisioning.

II. GPU-CAPP FRAMEWORK DETAILS

GPU Constant Average Power Processing (GPU-CAPP)
uses a two-level decentralized control schema to optimize
the performance under a power target. We adopt the design
from Straube et. al [26] to work for GPUs instead of CPUs
and extend its behavior for several GPU-specific features.
We cover the design here to clarify the functionality in the
GPU setting. The major differences that between the CPU
domain and the GPU domain are threefold. First, the number
of streaming multiprocessors (SMs) in a GPU far outnumber
the number of cores in a CPU. The additional SMs can
utilize local control and will allow for even larger swings
between the average and maximum power. The increased
number of control nodes (aka SMs or cores) highlights the
scalability requirements for the GPU setting, exacerbating
any scalability issues with various designs. Second, the pro-
gram behaviors between CPU programs and GPU programs
are different due to the focus on data parallel workloads
for the GPU to extract maximum benefit. These different
workloads will change the power and performance behavior
of the system. Finally, the interaction of the observable
metrics at each SM with the future power behavior is



Figure 3: CAPP: High Level Architecture

different from its CPU counterpart due to the pipeline and
program designs for the GPU domain. These factors make
the potential impact of a GPU implementation larger than
that of a CPU implementation.

The key reason GPU-CAPP is more scalable is that all
global communication occurs through the power supply
network. The use of a local and global controller allow for
per-SM and per-chip control behaviors respectively without
affecting the scalability of the approach in the GPU imple-
mentation. The global controller maintains the power target
of the entire chip. The local controller optimizes the power
usage at each SM to reduce inefficient power usage. Figure
3 shows the high-level design of GPU-CAPP. In this paper,
we adapt the original algorithm by replacing the system
units (SUs) with SMs, modifying the global controller and
changing the local controllers for interfacing with the SMs.

The general flow of GPU-CAPP begins with an activity
change at one or more SMs. This causes an increased
current draw which is propagated back to the global Voltage
Regulator (VR) through the power supply network. The
global VR senses this current and the global controller
receives the new current value with the global voltage. The
global controller calculates the new global voltage and sets
the global VR to output this new global voltage. The global
VR settles to the new global voltage. The local VRs and
local controllers get the new global voltage, convert that
voltage to a local voltage and output the new local voltage
and local frequency. The SM is set to the new local voltage
and frequency, altering the power to better meet the power
target.

A. Global Controller

The global controller uses the current measurement on the
global voltage supply rail along with the last applied voltage
obtained from the VR with integrated current sensing such
as [24]. The global controller includes and analog to digital

converter, control logic, and the defined power target (stored
in a register). The control logic within the global controller
converts the input current and voltage measurements to a
power measurement. This power measurement is converted
to a power error with the power target. A Proportional-
Integral-Derivative (PID) controller uses the power error to
determine the new global voltage. The controller was tuned
manually with a single benchmark and then subsequently
validated across the entire benchmark suite. The global
controller feeds back the new global voltage setting to the
voltage regulator. This method of control is reactive to the
power changes as they occur and will exceed the power
target for very short periods of time (<20 microseconds).
However, the global controller reacts quickly to reduce the
voltage to bring the power back to the power target. These
short times above the power target are allowable because
the capacitance built into the system will filter out the extra
power draw for short periods of time.

The implementation of the PID controller allows for
several design decisions. We tuned the proportional and
integral coefficient using a step response function and a
single benchmark. Through successive runs, we first tuned
the proportional coefficient to its maximum stable value
by increasing it until the output became unstable. Then, it
was backed off and the integral component was increased
until the power constraint was within a 5% guardband. This
step insured that the integral component properly controls
the steady state error. Since the system current draw as a
function of the voltage changes over time, we also used a
single benchmark (hotspot) to further tune the PID controller
coefficients. By adding to the integral coefficient, these
activity oscillations affected the global voltage less. We
found that the derivative component was not needed for
this application. We added a feed-forward component to
the PID controller to center the PID behavior within the
desired range of voltages. The integral error was clipped to



prevent a large amount of integral error from building up and
unduly influencing the system over a long period of time.
The PID tuning is specific to the system design. A new
system architecture would require the PID to be re-tuned.
Process variations could be handled through different PID
coefficients or guardbands and binning the resulting silicon
into various bins satisfying the power characteristics. The
PID controller would still control the system sufficiently
with expected process variations but may be slightly more
aggressive or conservative compared to the median system
unit.

On a production device, PID tuning would follow an
algorithmic procedure. First, the proportional constant would
be increased until the voltage response was sufficiently fast
(with some extra guardband). Then, the integral constant
would be increased until the worst case power virus did not
violate the power target.

B. Local Controller

The local controller interfaces with the per-SM voltage
regulator (or DC-DC converter) to control the local voltage
and frequency. The local controller improves the power effi-
ciency of the SM by controlling the voltage and frequency of
the SM based on a chosen metric. When the SM is not at full
utilization, the local controller can drop the local voltage,
slowing down the SM and freeing power for other more
critical SMs. To accomplish this task, the local controller
uses a small amount of control logic, an interface with the
SM and an interface with the local VR. The local controller
uses a metric such as instructions per clock (IPC) from the
SM to determine how much of the global voltage to use.
For a GPU, there are additional metrics that are available at
each SM for the local controller such as the number of active
warps. Thermal effects are not modeled in this paper because
we assume that the system is limited by the provisioned
power not thermal effects but could be handled by the local
controller.

We evaluated several possible local controller designs
based on three possible metrics. The first local controller
design is a threshold-based design using IPC as the primary
metric. This means that when the IPC exceeds the upper
threshold of 0.8, the ratio of the global voltage used by the
local controller to define the local voltage would increase
by 0.05 (to a maximum of 1.0). When the IPC fell below
the lower threshold of 0.6, the ratio would decrease by
0.05 (to a minimum of 0.7). These values were determined
experimentally based on the fixed frequency runs of a subset
of the benchmarks. The local voltage equals the global volt-
age (controlled by the global controller) multiplied by the
local controller ratio. The voltage determines the allowable
frequency that the SM can run. This kind of controller is a
static local controller using IPC. We chose to examine IPC
as a control metric because high IPC indicates that the SM
is bottlenecked by the compute units, not uncontrolled units

such as memory. Frequency increases in the case of high
IPC often translate to additional completed instructions and
faster overall execution.

We also implemented a local controller using the number
of active warps. The threshold-based design is similar but
uses different upper and lower threshold values. A high
number of active warps allows the SM to time multiplex the
warps to prevent any single one from being bottlenecked
by memory. Therefore, frequency increases often result in
faster program execution. A lower number of active warps
may not be able to fully utilize the SM so the frequency can
be lowered with reduced performance impact.

The last static local controller we implemented was based
on the number of inactive warps. While this initially seems
unintuitive based on the explanation for the active warp-
based local controller, the number of inactive warps can
indicate that the SM is the lagging SM of the parallel
execution due to increased memory time or other outside
latencies. The increased memory time, for example, may
have resulted from cache misses, coherence traffic or page
faults. To speed up the execution of the entire program, the
lagging SM is the bottleneck and needs to be accelerated.
The competing factors between the active and inactive warp
controllers can manifest differently depending on the specific
benchmark behavior.

We implemented a dynamic controller for each of these
static controllers that attempts to get the global voltage to
equal to a desired value. Each of these controllers use a
static-based design that has fixed thresholds but that limits
the adaptability of the local controller to various benchmark
behaviors. By allowing the target value to adjust, the local
controller thresholds dynamically adjust for the different
behaviors of the various benchmarks. To determine whether
to alter the local voltage via the local controller voltage
ratio, the local controller measures if the metric exceeds the
desired target by a fixed percentage (5% in this implementa-
tion). Attempting to get the global voltage to a target value
allows the controller to adapt to the current power. When
the voltage is above the target voltage, the metric target
will increase to be further discerning between the SMs. This
method pushes the power to the SMs that have the highest
relative metric values without global communication. These
local controllers were created for the IPC, active warp and
inactive warp metrics.

C. Effects of the Power Supply Network

Central to the way that this scheme functions are the
characteristics of the power supply network. Based on the
resistance, capacitance, and inductance of the system, the
time for the global voltage to propagate from global VR
to the per-SM VRs and the time for the current changes
to propagate from the SMs to the global VR can change.
These times are critical to determining how fast the global
controller can operate and change the global voltage.



Table I: Breakdown of delays for CAPP transitions

Component Transition time (ns)
Voltage Regulator 36-226
Sensing Circuitry 50-60

Controller 10-30
Power Supply Network 3-15

Total 99-331
GPU-CAPP Control Period 1,000

The frequency of the GPU-CAPP control code execution
is determined by the hardware details shown in Table I. The
voltage regulator delays originate from the Raven voltage
regulator implementation [16]. We selected this VR for
its quick response time to voltage changes. The sensing
circuitry, power supply network and controller delays are
determined from Cadence Spectre simulations. The power
supply network delays are design specific and may change
depending on the design. We used the model presented by
Gupta et. al [9]. To ensure that these numbers are not too
aggressive, we use a conservative control cycle time of 1
microsecond.

D. Assumptions and Implementation Issues

Throughout this design, we make several assumptions
about the system and the design of the nodes. The proposed
design of GPU-CAPP is decentralized and global voltage
control is independent of the control of the SMs themselves.
Since the global voltage can change without warning the
SMs, there is a risk of timing violations if the changes are
not adequately addressed. There are two ways to design the
system to prevent these issues. First, a voltage guardband can
be applied to the system to ensure that the local controller
has sufficient time to react as the global voltage drops.
Second, the SMs can use adaptive clocking as described
by Keller [15]. Adaptive clocking uses a local oscillator that
operates at the local voltage and is used for clocking the SM
to prevent timing violations. In our specific implementation,
we assume the use of adaptive clocking but we provide the
alternative strategy for future potential implementations.

III. EVALUATION METHODOLOGY

To evaluate the GPU implementation of GPU-CAPP, we
used GPGPU-Sim. GPGPU-Sim simulates the functional ca-
pabilities of the parallel thread execution and the timing be-
havior of the compute portion of the GPU [1]. It uses a low-
level virtual machine by Nvidia using a CUDA intermediate
code format to functionally evaluate the program. The timing
portion of GPGPU-Sim is a cycle-level simulator focusing
on the SMs, caches, interconnect network, memory partition
and graphics DRAM. Each of these components have one
or more detailed models to capture detailed behaviors and
model them appropriately. The main definition of our GPU
target system is shown in Table II.

Table II: Details of GTX 480 Configuration

Component Detail
SMs 15

Cores per SM 1
L1 Cache Size 16 kB

Shared Memory Size 48 kB
L2 Cache Size 768 kB

Maximum Frequency 700 MHz
Minimum Frequency 100 MHz

While GPU-CAPP is a general approach to power capping
in GPUs, we defined the specific implementation that we
would use to evaluate the idea. The GTX480 architecture
forms the base of the GPU because its power was charac-
terized in detail in GPUWattch. To measure the power, we
use the GPUWattch energy model that is integrated with
GPGPU-Sim [18]. This model accounts for both dynamic
and static power draws based on the activity factors and
system configuration of the GPU.

From this setup, we modified the internal simulator code
to support GPU-CAPP functionality. The GPU-CAPP con-
trol code runs together with the power model to properly
update the voltage and frequency settings of each SM. The
power model provides the total power and the simulator
core provides the IPC metric information for each simulator
cycle. We modified the GPUWattch code to support dynamic
voltage and frequency scaling (DVFS).

For all results in this paper, we selected power targets to
demonstrate the behavior at different areas of the frequency
curve. The fixed frequency system uses the frequency that
does not violate the power constraint across all benchmarks.
Since the fixed frequency implementation provides a steady
baseline against which all schemes can be compared, we
consider this to be a fair comparison.

IV. PERFORMANCE ANALYSIS OF GPU-CAPP

To evaluate the performance of GPU-CAPP, we ran a
subset of the Rodinia benchmark suite on the GTX480
with an expanded voltage and frequency set [5]. These
benchmarks were chosen as a representative set of the entire
suite to show the capabilities of GPU-CAPP on GPGPU
applications.

For each benchmark, a power target was set to a pres-
elected value. We collected baseline values of power and
execution time for a range of frequencies from 100 MHz to
700 MHz. The top frequency option shows the best possible
execution time that GPU-CAPP could reach if it was not
bounded by power. We present the results for two different
experiments. We assume the system is configured to run
a set of workloads and the GPU-CAPP peak provisioned
power is set to the predefined value. The maximum possible
frequency that can be used as a baseline is the highest
frequency which does not violate the power constraint for
all benchmarks. We evaluate the speedup and provisioned
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Figure 5: Average and maxiumum power for each fixed
frequency (100 MHz–700 MHz at 50 MHz granularity).

power efficiency of a variety of GPU-CAPP implementations
at a single power target. We also evaluate the impact of the 1
level GPU-CAPP implementation at both a lower power con-
figuration to understand how GPU-CAPP behaves at various
power levels. These power levels correlate to two different
cost points in provisioning these GPUs and the relative
speedup shows the improvement over fixed frequency. We
also compare the speedup achieved relative to the 700 MHz
performance to see how we compare with the maximum
performance despite the additional power constraint. The
results for each of these cases provide insights into the
capabilities of GPU-CAPP.

A. GPU-CAPP Controller Evaluation Results

The high power configuration of the system uses a power
limit of 43 Watts. Under this constraint, the maximum
possible frequency for the fixed frequency system is 350
MHz. We tested the 1 Level GPU-CAPP implementation and
all of the 2 Level GPU-CAPP implementations described in
Section III.

Figure 4 shows the speedups achieved by the various
GPU-CAPP implementations over the set of Rodinia bench-
marks when using the 23W power target. The overall
speedup available is less due to the reduced frequency gap
between the baseline system (350 MHz) and the maximum
system frequency (700 MHz). Figure 5 shows the power
characteristics of the fixed frequency runs. The curves rep-
resent the average and maximum power for each frequency
point across the benchmark suite. The different power behav-
ior of the benchmarks with respect to frequency illustrates
how some benchmarks can gain more speedup under a
power constraint than others. The larger the gap between the
average power and the maximum power, the more potential
for speedup under a power limit because on average there is
more excess allocated power to utilize. The two horizontal
lines show the two power constraints that we evaluate in this
paper. To determine the appropriate fixed frequency system
for comparison, we took the fixed frequency setting that did
not have a maximum power above the specified power for
any benchmark. With this methodology, we determined that
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350 MHz was the high power setting and 200 MHz was the
lower power setting. The 1-Level GPU-CAPP implemen-
tation with no local controllers achieves an average 5.0%
speedup. The local controllers can achieve further average
speedups of up to 12%. The optimal local controller was the
dynamic target active warp local controller. These speedups
are less than the low power results because of the reduced
available speedup. The best local controller captures 85.2%
of the speedup at 700 MHz. Figure 6 shows the maximum
power at 700 MHz. These values exceed the power target so
700 MHz cannot be used and is not viable for this system but
is is the highest possible frequency and shows the maximum
unconstrained performance. GPU-CAPP only reduces the
speedup by 14.8% relative to 700 MHz despite reducing
the required power provisioning by 184%.

Figure 7 shows the provisioned power efficiency relative
to the high power target for 350 MHz, 1-Level GPU-CAPP
and 2-Level Warp GPU-CAPP. The 350 MHz provisioned
power efficiency shows the base PPE of the system without
a dynamic power management scheme. This varies across
benchmarks as expected. 1-Level GPU-CAPP improves the
average provisioned power efficiency from 54.4% at 350
MHz to 61.1%. The efficient local controllers generally
improve the power efficiency in the high power case. For ex-
ample, the dynamic target active warp local controller-based
GPU-CAPP implementation achieved 65.6% provisioned
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Figure 9: Results with Low Power Target (23 W)
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Figure 8: Normalized maximum power to high power target
(43 W).

power efficiency. This shows how the best local controller
achieves 7% more speedup and how GPU-CAPP leverages
the additional available provisioned power to gain speedup
despite the power constraint. The improved provisioned
power efficiency in the local controller shows how it can
add local control that improves efficiency. This behavior
will not fit for all benchmarks. For example, particlefilter,
myocyte and lud all are less efficient for 2-Level Warp
GPU-CAPP compared to 1-Level GPU-CAPP. These cases
identify current shortcomings of the local controller design.
The behavior of the warps in these cases causes the local
controller to reduce frequency when the system benefits from

an increase in frequency without exceeding the power limit.
Future work on the local controllers could target these cases
to improve the average PPE.

Figure 8 shows the maximum provisioned power to deter-
mine whether the GPU-CAPP approaches violate the power
constraint. 350 MHz has an average maximum power of
77.7% with a maximum of 98.7%. This verifies that 350
MHz is a valid frequency setting for the power constraint.
These values also indicate that the frequency setting is
close to the optimal infinite-granularity frequency setting
for this power limit. 1-Level GPU-CAPP has an average
maximum power of 74.8% showing that it does not violate
the power constraint. The dynamic target active warp local
controller-based implementation has an average maximum
power of 81.1% with a maximum of 95.8%. Based on these
results, the local controllers provide additional speedup and
provisioned power efficiency without violating the power
constraint at high power.

B. Experiments with Low Target Power
The low power configuration of the system uses a power

limit of 23 Watts. Under this constraint, the maximum
possible frequency for the fixed frequency system is 200
MHz. We tested the 1 level GPU-CAPP implementation to
understand how this design scales to other power levels.
This lower power constaint shows a system with lower
provisioned power and provisioning cost.
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Figure 9a shows the speedup achieved by the GPU-
CAPP implementation over the set of Rodinia benchmarks
when using the 23W power target. The main factors that
determine the speedup achieved by GPU-CAPP are the
available speedup in the benchmark and the average power
of the 200 MHz system. The more power gap there is
between the power target and the 200 MHz system, the
more power can be applied to raise the performance. The
available speedup is the speedup that the benchmark can
achieve with frequency scaling. The 1-Level GPU-CAPP
implementation with no local controllers achieves an average
26.5% speedup. GPU-CAPP at 23 Watts cannot capture
much of the 700 MHz performance due to the more strict
power constraint. However, at this strict of a low power
constraint, the comparison becomes less informative because
the 700 MHz average power of some benchmarks exceeds
100 Watts, over 400% more than the provisioned power here.

The local controllers are not shown because they require
additional design and tuning to meet the power constaint.
At lower powers with the current local controller designs,
the power fluctuations due to GPU activity compounded
with the possible power impact due to changes at the
local controller can cause current changes that the global
controller cannot manage. At low power, we intend to design
the local controllers to use smaller frequency steps to allow
the global controller to maintain control despite both the
activity and local controller behavior changing.

The provisioned power efficiency is shown in Figure
9b relative to the low power target. 1-Level GPU-CAPP
improves the average provisioned power efficiency from
61% at 200 MHz to 88.8%. This improvement occurs
because GPU-CAPP increases the frequency when the power
is below the target to attempt to use all available power. This
behavior is consistent with the provisioned power efficiency
improvements seen at 43 Watts. Since there were no changes
to the controller besides the power target, these results show
that GPU-CAPP can be used to target multiple power levels
without additional design or tuning.

Figure 10 shows maximum provisioned power to deter-

mine whether the GPU-CAPP approaches violate the power
constraint. 1-Level GPU-CAPP has an average maximum
power of 96.5% showing that it properly caps the power.
This ensures that the different power target does not cause
GPU-CAPP to fail the power constraint.

Overall, the low power configuration demonstrates the
scalability of GPU-CAPP. Since there were no changes to
the controller besides the power target, these results show
that GPU-CAPP can be used to target multiple power levels
without additional design or tuning. This also means that
GPU-CAPP could be reconfigured to a new power target in
a system if needed. The speedup and PPE of GPU-CAPP
is better at lower power because there is a larger frequency
gap between the fixed frequency system and the maximum
operating frequency.

V. DISCUSSION

The results show that GPU-CAPP can speedup execution
of several programs while maintaining the power cap defined
by the amount of power provisioned for the system. The
main difference between the benchmarks where GPU-CAPP
gains significant speedup and those where it does not is the
amount of provisioned power efficiency that the fixed fre-
quency configuration attains. If there is a large gap between
the average power and the maximum power, then GPU-
CAPP can use the extra power during the more frequent
low power times to accelerate computation.

The local controllers implemented in this paper have
not been extensively optimized. More advanced and intel-
ligent local voltage controllers could significantly improve
performance, and will be investigated in future work. The
local voltage controllers can be improved with either more
intelligent hardware algorithms or, more intriguingly, it is
straightforward to provide a mechanism for the OS to change
the ratios being used at a local controller. Giving the OS
and/or the user the ability to have some input regarding when
a given SM should speed up or slow down has the potential
to be significantly more effective, since the hardware itself
has no way to know when it is entering a critical section
but the programmer does. Software hints can also tell GPU-
CAPP which local controller to use based on the expected
behavior of the program.

For our implementation, we assume the use of a switched-
capacitor voltage regulator. It is also possible to use a stan-
dard integrated buck voltage regulator, which would increase
the control cycle time to ∼2 µs. The integrated voltage
regulator technology has been demonstrated in products such
as Intel’s Haswell processor in 2013. In the absence of an
integrated voltage regulator, the control cycle time would
increase dramatically and require a new design.

In this paper we have assumed that the power constraint
given to GPU-CAPP is lower than the TDP (thermal design
power), so we do not take temperature and thermals into
account. GPU-CAPP does not preclude local controllers



from taking local core temperature as an additional input
to set its voltage during each epoch, however.

While this paper is about the chip level technique, GPU-
CAPP provides benefits at the rack level and datacenter level.
Since each chip is consuming a more consistent amount
of power, the racks are also consuming a more consistent
amount of power. Datacenter level algorithms can be added
on top of GPU-CAPP and can also change the power target
of each individual GPU-CAPP instance to use intelligence
at the higher level to further improve execution time.

Design Guidance

What do these results mean to different stakeholders
of a high performance computing system, namely, GPU
architects, HPC operators, and programmers?

Our guidance to the GPU architect is to use GPU-CAPP
and to expand the available frequency range. As shown
previously, GPU-CAPP allows for the GPU to gain more
performance with lower provisioning cost. By expanding the
available frequency range, GPU-CAPP can use the higher
frequencies to increase performance even further when there
is available provisioned power.

Our guidance to the HPC operator is to configure the
system using a representative kernel to determine the best
local controller for their workload. The power that the
system can be configured to use is likely set when they
datacenter is built and does not need to be configured later.
To choose the optimal local controller, we recommend that
a small representative kernel is run on the system for each
local controller design. If this is impossible or otherwise
untenable, we recommend using the dynamic target warp-
based local controller since it achieves the best average
performance.

Our guidance to the programmer is to spend less time and
money perfecting parallel algorithms when other tasks await.
GPU-CAPP improves performance and reduces imbalance
because inbalanced areas are most accelerated due to the
reduced power draw. Due to this acceleration of imbalanced
areas, GPU-CAPP reduces the cost of imperfectly balanced
programs so other programming tasks can take priority
above the difficult algorithm balancing efforts.

VI. RELATED WORK

Turbo Boost and RAPL by Intel attempt to address the
power capping problem [4]. Turbo Boost does not truly
apply because it focuses on exceeding the power target
when the thermal conditions allow. RAPL seeks to keep
the average power under a certain limit which corresponds
almost directly to power capping. RAPL uses a central-
ized controller to accumulate all of the relevant metrics
from each node in the system that it can control. In this
case, a node is a power-managed subcomponent of the
system such as a processor core or GPU SM. Combined
with the current power measurements, the RAPL controller

determines voltage and frequency settings for each node
in the system and sends them back out. This approach
is primarily implemented in firmware and software. The
centralized implementation causes a few key issues. First,
the cycle time of the RAPL control must be slow enough for
all of the metrics to propagate to the controller, compute the
settings and propagate back to all of the nodes. On a GPU,
where the nodes may be far from the controller, this can
force the control cycle time to be very slow and potentially
be unable to properly control the system under the power
constraints. Second, the centralized approach requires a way
for all of the node information to get to the RAPL controller.
This can be achieved using a bus or separate wires. As the
number of nodes in the system scales, the bus must become
larger or it will become congested. The use of dedicated
wires leads to increases in area and power cost as the number
of nodes in the system scales. Realistically, these approaches
are untenable as the number of nodes scales to hundreds of
SMs and other approaches are required.

Other approaches to this issue [17], [12], [11] use
firmware or software-based approaches to measure the sys-
tem power and change pre-existing hardware settings to re-
duce the power draw. These approaches change performance
states or available hardware (through power gating) in a
system but suffer from slower reaction times compared to
hardware. As described in [3], fast power issues can occur
and the need for low delay power management schemes in
the data center exists to reduce the power provisioning costs.

Data center-level approaches to this problem also exist.
Ellsworth et al represent this kind of approach by reallo-
cating work among the data center machines to maintain a
power cap while improving performance [8]. However, even
these approaches ultimately rely on local power capping
approaches to help manage the individual system power.

Despite focusing on GPUs, power management in proces-
sors directly applies to this work and serves as a comparison
point with a large existing body of work. Själander et. al [25]
provides a detailed survey of many power management
techniques with a focus on DVFS and related variants. In
this paper, we focus on the power capping problem, meaning
that we seek to maximize the performance of the GPU
under a power limit. Classic DVFS is related but does
not directly apply because the focus of those approaches
is to minimize the power consumption while satisfying a
performance constraint. However, the local controllers in
GPU-CAPP may implement techniques similar to classic
DVFS as they seek to use the available power efficiently.

Other works focus on scaling the voltage to achieve
desired performance results in large-scale computing sce-
narios. Adrenaline [10] attempts to reduce the tail latency
of Memcached queries by voltage boosting. Rubik [14]
uses fine grain voltage scaling and boosting to reduce vari-
ability in latency in datacentric workloads. Harmonia [21]
dynamically tunes the hardware operating configurations to



maintain a balance between the power dissipated in compute
versus memory access across GPGPU application phases,
and DynaCo [22] that coordinates the distribution of power
between a CPU and GPU. These three approaches seek to
control the voltage to maximize performance in different
scenarios.

Other works focus on scaling the voltage to achieve
desired performance results in large-scale computing sce-
narios. Adrenaline [10] attempts to reduce the tail latency
of Memcached queries by voltage boosting. Rubik [14]
uses fine grain voltage scaling and boosting to reduce vari-
ability in latency in datacentric workloads. Harmonia [21]
dynamically tunes the hardware operating configurations to
maintain a balance between the power dissipated in compute
versus memory access across GPGPU application phases,
and DynaCo [22] that coordinates the distribution of power
between a CPU and GPU. These three approaches seek to
control the voltage to maximize performance in different
scenarios.

Choi et al. [6] created a mathematical model to determine
the limits of several systems under a power cap based on
the computational intensity (flops per byte) of the program.
GPU-CAPP differs from this work by using a dynamic GPU-
focused control mechanism and focusing on GPU-specific
behaviors. This model can be used to provide insight into
the maximum possible performance under a power cap and
can be used to approximate the translation of GPU-CAPP
to other platforms.

Tsuzuku and Endo [27] provide a hybrid (dynamic-static)
software-based approach to power capping by using a static
model to determine ideal frequencies based on profiling the
benchmark in combination with a dynamic implementation
to control the GPU frequency during operation to reduce the
energy consumption when possible. GPU-CAPP focuses on
maximizing the performance of the system without violating
the power constraint. Tsuzuku and Endos implementation
seeks instead to prevent power constraint violations with-
out affecting the energy-to-solution. GPU-CAPP does not
directly compare to this work because it does not attempt to
control the energy to solution but instead solely focused on
maximizing the performance.

Co-Cap [19] caps the frequency of the CPU or GPU in
a heterogeneous system to divert the power to the dominant
component in the benchmark. However, the primary goal of
Co-Cap is to reduce the energy per frame without significant
performance impact. In this case, they control the frequency
capping using a software-based model that was trained on
a large set of benchmarks. GPU-CAPP instead seeks to
maximize the performance under a power deliver constraint.

VII. CONCLUSIONS AND FUTURE WORK

The technique proposed here is a purely hardware ap-
proach to maximize the provisioned power efficiency of a
GPU. In the future, we plan to extend this approach to allow

the OS to guide the local controllers, to set their voltage and
frequency based on execution history of applications or user-
hints. In this paper we selected the IPC metric to guide the
local controller in order to demonstrate the feasibility of the
approach. However, there may be other metrics that are more
appropriate for detecting fine grain critical sections. We
intend to explore the design space of these control strategies
in the future.

GPU-CAPP can be extended beyond the GPU realm by
combining with CAPP and other new implementations to
control a variety of components of the system. The local
controllers can be different throughout the system. We plan
to explore how this implementation needs to be changed
to include common configurations such as CPU, GPU and
memory. Beyond the common configurations, we also intend
to evaluate the inclusion of other interesting nodes such as
hardware accelerators or FPGAs. Each of these new nodes
requires new models and the development of a simulation
framework to evaluate the power and performance of the
system.
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