
Supporting x86-64 Address Translation for 100s of GPU Lanes

Jason Power Mark D. Hill David A. Wood

Department of Computer Sciences

University of Wisconsin–Madison

{powerjg,markhill,david}@cs.wisc.edu

Abstract
Efficient memory sharing between CPU and GPU threads

can greatly expand the effective set of GPGPU workloads.

For increased programmability, this memory should be

uniformly virtualized, necessitating compatible address

translation support for GPU memory references. However,

even a modest GPU might need 100s of translations per

cycle (6 CUs * 64 lanes/CU) with memory access patterns

designed for throughput more than locality.

To drive GPU MMU design, we examine GPU memory

reference behavior with the Rodinia benchmarks and a

database sort to find: (1) the coalescer and scratchpad

memory are effective TLB bandwidth filters (reducing the

translation rate by 6.8x on average), (2) TLB misses occur

in bursts (60 concurrently on average), and (3) post-

coalescer TLBs have high miss rates (29% average).

We show how a judicious combination of extant CPU

MMU ideas satisfies GPU MMU demands for 4 KB pages

with minimal overheads (an average of less than 2% over

ideal address translation). This proof-of-concept design

uses per-compute unit TLBs, a shared highly-threaded page

table walker, and a shared page walk cache.

1. Introduction

Graphics processing units (GPUs) have transformed from

fixed function hardware to a far more general compute

platform. Application developers exploit this programmabil-

ity to expand GPU workloads from graphics-only to more

general purpose (GP) applications. Compared with multi-

core CPUs, GPGPU computing offers the potential for both

better performance and lower energy [23]. However, there is

still room for improvement; complex programming models

and data movement overheads impede further expansion of

the workloads that benefit from GPGPU computing [29].

Currently, processor manufacturers including AMD, Intel,

and NVIDIA integrate CPUs and GPUs on the same chip.

Additionally, a coalition of companies including AMD,

ARM, Qualcomm, and Samsung recently formed the

Heterogeneous System Architecture (HSA) Foundation to

support heterogeneous computation [34].

Although physical integration is becoming widespread, the

GPGPU compute platform is still widely separated from

conventional CPUs in terms of its programming model.

CPUs have long used virtual memory to simplify data

sharing between threads, but GPUs still lag behind.

A shared virtual address space allows “pointer-is-a-

pointer” semantics [30] which enable any pointer to be

dereferenced on the CPU and the GPU (i.e., each data

element only has a single name). This model simplifies

sharing data between the CPU and GPU by removing the

need for explicit copies, as well as allowing the CPU and

GPU to share access to rich pointer-based data structures.

Unfortunately, there is no free lunch. Translating from

virtual to physical addresses comes with overheads.

Translation look-aside buffers (TLBs) consume a significant

amount of power due to their high associativity [15, 16, 33],

and TLB misses can significantly decrease performance [6,

17, 20]. Additionally, correctly designing the memory

management unit (MMU) is tricky due to rare events such

as page faults and TLB shootdown [10].

Current GPUs have limited support for virtualized ad-

dresses [11, 12, 36]. However, this support is poorly

documented publicly and has not been thoroughly evaluated

in the literature. Additionally, industry has implemented

limited forms of shared virtual address space. NVIDIA

proposed Unified Virtual Addressing (UVA) and OpenCL

has similar mechanisms. However, UVA requires special

allocation and pinned memory pages [25]. The HSA

foundation announced heterogeneous Uniform Memory

Accesses (hUMA) which will implement a shared virtual

address space in future heterogeneous processors [28], but

details of this support are neither published nor evaluated in

public literature.

Engineering a GPU MMU appears challenging, as GPU

architectures deviate significantly from traditional multi-

core CPUs. Current integrated GPUs have hundreds of

individual execution lanes, and this number is growing. For

instance the AMD A10 APU, with 400 lanes, can require up

to 400 unique translations in a single cycle! In addition, the

GPU is highly multithreaded which leads to many memory

requests in flight at the same time.

To drive GPU MMU design, we present an analysis of the

memory access behavior of current GPGPU applications.

Our workloads are taken from the Rodinia benchmark suite

[9] and a database sort workload. We present three key

findings and a potential MMU design motivated by each

finding:

1. The coalescing hardware and scratchpad memory

effectively filter the TLB request rate. Therefore, the L1

TLB should be placed after the coalescing hardware to

leverage the traffic reduction.

2. Concurrent TLB misses are common on GPUs with an

average of 60 to a maximum of over 1000 concurrent

page walks! This fact motivates a highly-threaded page

table walker to deliver the required throughput.

3. GPU TLBs have a very high miss rate with an average

of 29%. Thus, reducing TLB miss penalty is crucial to

reducing the pressure on the page table walker, and

thus, we employ a page walk cache.

Through this data-driven approach we develop a proof-of-

concept GPU MMU design that is fully compatible with

CPU page tables (x86-64 in this work). Figure 1 shows an

overview of the GPU MMU evaluated in this paper. This

design uses a TLB per GPU compute unit (CU) and a shared

page walk unit to avoid excessive per-CU hardware. The

shared page walk unit contains a highly-threaded page table

walker and a page walk cache.

The simplicity of this MMU design shows that address

translation can be implemented on the GPU without exotic

hardware. We find that using this GPU MMU design incurs

modest performance degradation (an average of less than

2% compared to an ideal MMU with an infinite sized TLB

and minimal latency page walks) while simplifying the

burden on the programmer.

In addition to our proof-of-concept design, we present a

set of alternative designs that we also considered, but did

not choose due to poor performance or increased complexi-

ty. These designs include adding a shared L2 TLB, includ-

ing a TLB prefetcher, and alternative page walk cache

designs. We also analyzed the impact of large pages on the

GPU TLB. We find that large pages do in fact decrease the

TLB miss rate. However, in order to provide compatibility

with CPU page tables, and ease the burden of the program-

mer, we cannot rely solely on large pages for GPU MMU

performance.

The contributions of this work are:

 An analysis of the GPU MMU usage characteristics

for GPU applications,

 A proof-of-concept GPU MMU design which is

compatible with x86-64 page tables, and

 An evaluation of our GPU MMU design that shows a

GPU MMU can be implemented without significant

performance degradation.

This paper is organized as follows. First, Section 2 dis-

cusses background on GPU architecture, GPU virtual

memory support, and CPU MMU design. Section 3 explains

our simulation infrastructure and workloads. Then, Section

4 presents our three data-driven GPU MMU designs

concluding with our proof-of-concept design. Section 5

discusses correctness issues. Next, Section 6 shows other

possible designs we considered, and finally, Section 7

discusses related work and Section 8 concludes.

2. Background

This section first introduces the GPU architecture and

current GPU virtual memory support. Then, we discuss the

memory model of current GPUs and our target system.

Finally, we cover background on CPU MMUs.

 GPU Architecture 2.1.

The important details of the GPGPU architecture are

shown in Figure 2. Figure 2b shows an overview of the

heterogeneous architecture used in this paper. In this

architecture, the CPU and GPU share main memory. The

CPU and GPU share a virtual address space and cache

coherence is maintained between the CPU and GPU caches.

Only a single CPU core is shown in Figure 2b; however,

this architecture supports any number of CPU cores. This

design is loosely based on future features announced for

HSA [29].

Figure 2a shows an overview of the GPU Compute Unit

(CU)—called a streaming multiprocessor (SM) in NVIDIA

terminology. Within each CU is a set of lanes—called

shader processors (SPs) or CUDA cores by NVIDIA and

stream processors by AMD—which are functional units that

can execute one lane instruction per cycle. Instructions are

fetched, decoded and scheduled by the instruction fetch unit

which is shared by all lanes of the CU. The lanes on each

CU also share a large, banked, register file. Each lane is

associated with a scalar thread, and a set of concurrently

executing threads on the CU lanes is a warp. We model a

32-thread warp similar to NVIDIA GPU architecture.

CU CU CU CU
Shared page

walk unit

L1
Cache

L1
Cache

L1
Cache

L1
Cache

L2 Cache

TLB TLB TLB TLB

Coalescer Coalescer Coalescer Coalescer Highly-threaded
Page table

walker

Page walk
cache

P
ag

ew
al

k
b

u
ff

er
s

P
ag

e
fa

u
lt

re

gi
st

er

Figure 1: Proposed proof-of-concept GPU MMU.

Compute Unit CPUGPU

Instruction Fetch / Decode

Coalescer

L1 Cache

Shared
Memory

L2
 C

ac
h

e

Register File

DRAM

CPU
Core

L1
Cache

L2 Cache

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

La
n

e

La
n

e

La
n

e

La
n

e

La
n

e

La
n

e

La
n

e

La
n

e

(a) (b)

Figure 2: Overview of the heterogeneous architecture used.

Due to the parallelism available in GPUs, it is difficult to

describe the performance in CPU terms. In this paper, we

use instruction to refer to the static instruction that all

threads execute. We use the term warp instruction to

represent a dynamic instruction which is executed by all

lanes on a single cycle per the Single-Instruction Multiple-

Thread (SIMT) execution model. And we use lane instruc-

tion to mean a dynamic instruction executed by a single lane

on a CU.

GPUs provide developers with different kinds of memory

accesses. Most memory operations can be separated into

two categories: Scratchpad memory—small, directly

addressed software-managed caches private to each CU

(called “shared memory” and “local memory” by NVIDIA

and AMD, respectively)—and global memory that is shared

by all CUs and addressed with CPU virtual addresses in our

shared virtual memory system. Accesses to scratchpad

memory cannot cause cache misses and use direct addresses

that are not translated. All accesses to global memory are

issued to the coalesce unit. This logic examines the

addresses from all lanes and attempts to minimize the

memory requests required. If all addresses issued by the

lanes are contiguous and within a single cache block—the

common case for graphics workloads—the coalescer takes

the lane requests (which number up to the size of the warp)

and generates a single memory access. After coalescing, the

memory request is issued to a write-through L1 cache.

Figure 2 shows that each CU’s L1 cache is backed by a

write-back L2 cache shared by all CUs on the GPU.

 GPU TLB and Virtual Memory Support 2.2.

Although current GPUs have virtual memory support, it is

incompatible with the CPU virtual memory. Current GPU

virtual memory, including IOMMU implementations [38],

use a separate page table from the CPU process which is

initialized by the GPU driver when the kernel is launched.

Additionally, GPU virtual memory does not support demand

paging or on the fly page table modifications by the

operating system. This lack of compatibility increases the

difficulty of writing truly heterogeneous applications.

Designs for TLBs specific to GPUs have been published

in the form of patents [11, 36]. However, there has been no

evaluation of these techniques in the public literature.

Additionally, Wong et al. found evidence of TLBs imple-

mented in NVIDIA GPUs [37]. However, the specific TLB

design is not publicly documented.

 GPU Programming Model 2.3.

Current GPGPU programming models consider the GPU

as a separate entity with its own memory, virtual address

space, scheduler, etc. Programming for the GPU currently

requires careful management of data between CPU and

GPU memory spaces.

Figure 3 shows an example CUDA application. Figure 3a

shows a simple kernel that copies from one vector (in) to

another (out). Figure 3b shows the code required to use the

vectorCopy kernel using the current separate address space

paradigm. In addition to allocating the required memory on

the host CPU and initializing the data, memory also is

explicitly allocated on, and copied to, the GPU before

running the kernel. After the kernel completes, the CPU

copies the data back so the application can use the result of

the GPU computation.

There are many drawbacks to this programming model.

Although array-based data structures are straightforward to

move from the CPU to the GPU memory space, pointer-

based data structures, like linked-lists and trees, present

complications. Also, separate virtual address spaces cause

__device__ void vectorCopy(int *in, int *out) {
 out[threadId.idx] = in[threadId.idx];
}

(a) Simple vector copy kernel

void main() {
 int *d_in, *d_out;
 int *h_in, *h_out;

 // allocate input array on host
 h_in = new int[1024];
 h_in = ... // Initial host array
 // allocate output array on host
 h_out = new int[1024];

 // allocate input array on device
 d_in = cudaMalloc(sizeof(int)*1024);
 // allocate output array on device
 d_out = cudaMalloc(sizeof(int)*1024);

 // copy input array from host to device
 cudaMemcpy(d_in, h_in, sizeof(int)*1024, HtD);

 vectorCopy<<<1,1024>>>(d_in, d_out);

 // copy the output array from device to host
 cudaMemcpy(h_out, d_out, sizeof(int)*1024, DtH);

 // continue host computation with result
 ... h_out

 //Free memory
 cudaFree(d_in); cudaFree(d_out);
 delete[] h_in; delete[] h_out;
}

(b) Separate memory space implementation

int main() {
 int *h_in, h_out;

 // allocate input/output array on host
 h_in = cudaHostMalloc(sizeof(int)*1024);
 h_in = ... // Initial host array
 h_out = cudaHostMalloc(sizeof(int)*1024);

 vectorCopy <<<1,1024>>> (h_in, h_out);

 // continue host computation with result
 ... h_out

 //Free memory
 cudaHostFree(h_in); cudaFree(h_out);
}

(c) “Unified virtual address” implementation

int main() {
 int *h_in, h_out;

 // allocate input/output array on host
 h_in = new int[1024];
 h_in = ... // Initial host array
 h_out = new int[1024];

 vectorCopy <<<1,1024>>> (h_in, h_out);

 // continue host computation with result
 ... h_out

 delete[] h_in; delete[] h_out;
}

(d) Shared virtual address space implementation

Figure 3: Example GPGPU application

data to be replicated. Even on shared physical memory

devices, like AMD Fusion, explicit memory allocation and

data replication is still widespread due to separate virtual

address spaces. Additionally, due to replication, only a

subset of the total memory in a system is accessible to GPU

programs. Finally, explicit separate allocation and data

movement makes GPU applications difficult to program and

understand as each logical variable has multiple names

(d_in, h_in and d_out, h_out in the example).

Beginning with the Fermi architecture, NVIDIA intro-

duced “unified virtual addressing” (UVA) [25] (OpenCL

has a similar feature as well). Figure 3c shows the imple-

mentation of vectorCopy with UVA. The vectorcopy

kernel is unchanged from the separate address space kernel.

In the UVA example, instead of allocating two copies of the

input and output vectors, only a single allocation is neces-

sary. However, this allocation requires a special API which

creates difficulties in using pointer-based data structures.

Separate allocation makes composability of GPU kernels in

library code difficult as well, because the allocation is a

CUDA runtime library call, not a normal C or C++ alloca-

tion (e.g. new/malloc/mmap). Memory allocated via

cudaMallocHost can be implemented in two different ways.

Either the memory is pinned in the main memory of the

host, which can lead to poor performance [24], or the data is

implicitly copied to a separate virtual address space which

has the previously discussed drawbacks.

Figure 3d shows the implementation with a shared virtual

address space (the programming model used in this paper).

In this implementation, the application programmer is free

to use standard memory allocation functions. Also, there is

no extra memory allocated, reducing the memory pressure.

Finally, by leveraging the CPU operating system for

memory allocation and management, the programming

model allows the GPU to take page faults and access

memory mapped files. From publicly available information,

HSA hUMA seems to take this approach [28].

 CPU MMU Design 2.4.

The memory management unit (MMU) on CPUs translates

virtual addresses to physical address as well as checks page

protection. In this paper we focus on the x86-64 ISA;

however, our results generalize to any multi-level hardware-

walked page table structure. The CPU MMU for the x86-64

ISA consists of three major components: 1) logic to check

protection and segmentation on each access, 2) a translation

look-aside buffer to cache virtual to physical translations

and protection information to decrease translation latency,

and 3) logic to walk the page table in the case of a TLB

miss. In this work, we use the term MMU to refer to the unit

that contains the TLB and other supporting structures. Many

modern CPU MMU designs contain other structures to

increase TLB hit rates and decrease TLB miss latency.

The x86-64 page table is a 4-level tree structure. By

default, the TLB holds page table entries, which reside in

the leaves of the tree. Therefore, on a TLB miss, up to four

memory accesses are required. The page table walker

(PTW) traverses the tree from the root which is found in the

CR3 register. The PTW issues memory requests to the page

walk cache that caches data from the page table. Requests

that hit in the page walk cache decrease the TLB miss

penalty. Memory requests that miss in the page walk cache

are issued to the memory system similar to CPU memory

requests and can be cached in the data caches.

The x86-64 ISA has extensions for 2 MB and 1 GB pages

in addition to the default 4 KB page size. However, few

applications currently take advantage of this huge page

support. Additionally, it is important for an MMU to

support 4 KB pages for general compatibility with all

applications.

3. Simulation Methodology and Workloads

We used a cycle-level heterogeneous simulator, gem5-gpu

[27], to simulate the heterogeneous system. gem5-gpu is

based on the gem5 simulator [8], and integrates the GPGPU

timing model from GPGPU-Sim [1]. We used gem5’s full-

system mode, running the Linux operating system. gem5-

gpu models full coherence between the CPU and GPU

caches as future systems have been announced supporting

cache coherence [28]. Results are presented for 4 KB pages.

Large page support is discussed in Section 6.4. Table 1

shows the configuration parameters used in obtaining our

results.

We use a subset of the Rodinia benchmark suite [9] for

our workloads. We do not use some Rodinia benchmarks as

the input sizes are too large to simulate. The Rodinia

benchmarks are GPU-only workloads, and we use these

workloads as a proxy for the GPU portion of future

heterogeneous workloads. We add one workload, sort, to

this set. Sort is a database sorting kernel that sorts a set of

records with 10 byte keys and 90 byte payloads. All

workloads are modified to remove the memory copies, and

all allocations are with general allocators (new/malloc/

mmap). Although we are running in a simulation environ-

ment and using reduced input sized, many of our working

sets are much larger than the TLB reach; thus, we expect

our general findings to hold as working set size increases.

As a baseline, we use an ideal, impossible to implement

MMU. We model an ideal MMU with infinite sized per-CU

TLBs and minimal latency (1 cycle cache hits) for page

walks. This is the minimum translation overhead in our

simulation infrastructure.

Table 1: Details of simulation parameters

CPU 1 core, 2 GHz, 64 KB L1, 2 MB L2

GPU 16 CUs, 1.4 GHz, 32 lanes

L1 cache (per-CU) 64 KB, 4-way set associative, 15 ns latency

Scratchpad memory 16 KB, 15 ns latency

GPU L2 cache 1 MB, 16-way set associative, 130 ns latency

DRAM 2GB, DDR3 timing, 8 channels, 667 MHz

4. Designing a GPU MMU through Analysis

We meet the challenges of designing a GPU MMU by

using data to evolve through three architectures to our

proof-of-concept recommendation (Design 3). Design 3

enables full compatibility with x86-64 page tables with less

than 2% performance overhead, on average. Table 2 details

the designs in this section as well as the additional designs

from Section 6.

We start with a CPU-like MMU (Design 0) and then

modify it as the GPU data demands. Design 0 follows CPU

core design with a private MMU at each lane (or “core” in

NVIDIA terminology). Design 0 has the same problems as a

CPU MMU—high power, on the critical path, etc.—but

they are multiplied by the 100s of GPU lanes. For these

reasons, we do not quantitatively evaluate Design 0.

 Motivating Design 1: Post-coalescer MMU 4.1.

Here we show that moving the GPU MMU from before to

after the coalescer (Design 0 → Design 1) reduces address

translation traffic by 85%.

GPU memory referencing behavior differs from that of

CPUs. For various benchmarks, Figure 4 presents opera-

tions per thousand cycles for scratchpad memory lane

instructions (left bar, top, blue), pre-coalescer global

memory lane instructions (left bar, bottom, green), and post-

coalescer global memory accesses (right bar, brown). The

“average” bars represent the statistic if each workload was

run sequentially, one after the other.

Figure 4 shows that, for every thousand cycles, the

benchmarks average:

 602 total memory lane instructions,

 268 of which are global memory lane instructions

(with the other 334 to scratchpad memory), and

 Coalescing reduces global memory lane instructions

to only 39 global memory accesses.

In total, the rate of memory operations is reduced from

602 to 39 per thousand cycles for an 85% reduction.

Although the coalescing hardware is effective, the bench-

marks do show significant memory divergence. Perfect

coalescing on 32 lanes per CU would reduce 268 global

memory lane instructions (per thousand cycles) by 32x to 9,

which is much less than the 39 observed.

To benefit from this bandwidth filtering, Design 1 in-

cludes a private per-CU L1 TLB after scratchpad memory

access and after the coalescing hardware. Thus, the MMU is

only accessed on global memory accesses. Figure 5 shows

Design 1 in light gray and Table 2 details the configuration

parameters.

 Motivating Design 2: Highly-threaded page 4.2.

table walker

Here we show that Design 1 fails to perform well (average

performance is 30% of an ideal MMU), isolate the problem

to bursts of TLBs misses (60 concurrent), and advocate for a

highly-threaded PTW (Design 2).

Now that we have mitigated the bandwidth issues, we

might expect Design 1 to perform well; it does not. For each

benchmark and the average, Figure 6 shows the perfor-

mance of Design 1 (leftmost, blue) compared to an ideal

MMU with an impossibly low latency and infinite sized

TLBs. Performance is good when it is close to the ideal

MMU’s 1.0. (Designs 2 (green) and 3 (brown) will be

discussed later.)

Figure 6 results show that Design 1 (blue) performs:

 Poorly on average (30% of ideal’s),

 Sometimes very poorly (about 10% of ideal for back-

prop, bfs, and pathfinder), and

 Occasionally adequately (gaussian and lud).

These performance variations occur for various reasons.

For example, bfs is memory bound—having few instruc-

tions per memory operation—making it particularly

sensitive to global memory latency. On the other hand,

gaussian and lud perform well, in part because the working

set sizes are relatively small.

Investigating Design 1’s poor performance lead to an

obvious culprit: bursts of TLB misses. For each benchmark

and the average, Figure 7 shows the average (left, blue) and

maximum across CUs (right, green) occupancy of the page

walk queue when each page walk begins. Note that the y-

axis is logarithmic.

Figure 7 shows that when each page walk is issued:

 An average of 60 page table walks are active at that

CU, and

Figure 4: All memory operations global memory operations,

and global memory accesses per thousand cycles.

Table 2: Configurations under study. Structures are sized so each
configuration uses 16 KB of storage.

 Per-CU

L1 TLB

entries

Highly-threaded

page table

walker

Page walk

cache size

Shared

L2 TLB

entries

Ideal MMU Infinite Infinite Infinite None

Section 4
Design 0 N/A: Per-lane MMUs None None

Design 1 128 Per-CU walkers None None

Design 2 128 Yes (32-way) None None
Design 3 64 Yes (32-way) 8 KB None

Section 6

Shared L2 64 Yes (32-way) None 1024
Shared L2

& PWC
32 Yes (32-way) 8 KB 512

Ideal PWC 64 Yes (32-way) Infinite None

Latency 1 cycle 20 cycles 8 cycles 20 cycles

 The worst workload averages 140 concurrent page

table walks.

Moreover, additional data show that, for these workloads,

over 90% of page walks are issued within 500 cycles of the

previous page walk, which is significantly less than the

average page walk latency in this design. Also, almost all

workloads use many more than 100 concurrent page walks

at the maximum. Therefore, these workloads will experience

high queuing delays with a conventional blocking page table

walker. This also shows that the GPU MMU requires

changes from the CPU-like single-threaded page-table

walker of Design 1.

This high page walk traffic is primarily because GPU

applications can be very bandwidth intensive. GPU

hardware is built to run instructions in lock step, and

because of this characteristic, many GPU threads simultane-

ously execute a memory instruction. This, coupled with the

fact each CU supports many simultaneous warp instructions,

means GPU TLB miss traffic will be high.

Therefore, Design 2 includes a shared multi-threaded page

table walker with 32 threads. Figure 5 shows how Design 2

builds on Design 1 in dark gray and Table 2 details the

configuration parameters. The page walk unit is shared

between all CUs on the GPU to eliminate duplicate

hardware at each CU and reduce the hardware overhead. On

a TLB miss in the per-CU L1 TLBs, the shared page walk

unit is accessed and executes a page walk.

 Motivating Design 3: Add a page walk cache 4.3.

Here we show that Design 2 performs much better than

Design 1 for most workloads but still falls short of an ideal

MMU (30% of ideal on average). For this reason, we

introduce Design 3 that adds a shared page walk cache to

perform within 2% of ideal.

The second bars in Figure 6 (green) show the performance

of each benchmark for Design 2. Results from this figure

show that Design 2:

 Often performs much better than Design 1, but

 That these benefits are inconsistent and short of ideal

We find the workloads that perform best have been tuned

to tolerate long-latency memory operations and the addition

of the TLB miss latency is hidden by thread parallelism.

On the other hand, some workloads, e.g., bfs and nw,

actually perform worse with Design 2 than Design 1. We

isolated the problem to the many requests from one CU

queuing in front of another CU’s requests rather than being

handled more round-robin as in the single-threaded page-

table walker of Design 1. While this specific effect might be

fixed by changing PTW queuing from first-come-first-serve,

we seek a more broadly effective solution.

To better understand why Design 2 falls short of ideal, we

examined the TLB miss rates. Figure 8 shows the miss rates

(per-CU, 128 entry) for each benchmark and the average.

Figure 8 results show that per-CU TLB miss rates:

 Average 29% across benchmarks and

 Can be as high as 67% (nw).

Needless to say, these rates are much higher than one

expects for CPU TLBs. Gaussian is a low outlier, because of

high computational density (compute operations per byte of

data) and small working set (so all TLB misses are compul-

sory misses).

This high miss rate is not surprising. With many simulta-

neous warps and many threads per warp, a GPU CU can

issue memory requests to a very large number of pages. In

addition, many GPU applications exhibit a memory access

pattern with poor temporal locality reducing the effective-

ness of caching translations. If an access pattern has no

temporal locality (e.g. streaming), even with perfect

L1
Cache

L1
Cache

L1
Cache

L2 Cache

TLB TLB TLB TLB

Shared page
walk unit

①
 ②

③

⑥
 ⑦

⑧

⑤

⑨

Coalescer Coalescer Coalescer Coalescer

Highly-threaded
page table

walker

Page walk
cache

P
ag

e
fa

u
lt

re

gi
st

er

④

L1
Cache

P
ag

e
w

al
k

b
u

ff
er

s

Figure 5: Overview of the GPU MMU designs. Design 1 is

shown in light gray. Design 2 is shown in light and dark gray.
And Design 3 is shown in light and dark gray and black.

Figure 7: Average and max size of the page walk queue for

each per-CU MMU in Design 1. Log scale, bold line at 2.

Figure 6: Performance of each design relative to an ideal MMU.

See Table 2 for details of configurations.

coalescing, each CU could potentially access 128 bytes per

cycle. This translates to only 32 cycles to access an entire 4

KB page, in the worst case.

As discussed previously, the global memory access rate on

GPUs is quite low (39 accesses per thousand cycles on

average) and consequently the TLB request rate is small.

Therefore, it’s possible that even though the GPU TLB

exhibits high miss rates the miss traffic (misses per cycle)

could be relatively low. However, this is not the case. There

is an average of 1.4 TLB misses per thousand cycles and a

maximum of 13 misses per thousand cycles.

We investigated several alternatives to improve on Design

2, discussed further in Section 6, and settled on one. Our

preferred Design 3 includes a page walk cache with the

shared page walk unit to decrease the TLB miss latency.

Figure 5 shows how Design 3 builds on Design 2 in black

and Table 2 details the configuration parameters.

Returning to Figure 6, the third bars (brown) show per-

formance of Design 3 relative to an ideal MMU (1.0):

 Design 3 increases performance for all benchmarks

over Design 2 and

 Design 3 is within 2% of the ideal MMU on average.

This increase in overall performance occurs because the

page walk cache significantly reduces the average page

walk time reducing the number of cycles the CU is stalled.

Adding a page walk cache reduces the average latency for

page table walks by over 95% and correspondingly

increases the performance. The performance improvement

of Design 3 is in part due to reducing the occupancy of the

page walk buffers since the page walk latency decreased.

This fact is most pronounced for bfs and nw, which suffered

from queuing delays.

 Summary of Proof-of-Concept Design 4.4.

(Design 3)

This section summarizes our proof-of-concept Design 3

and presents additional details to explain its operation.

Figure 5 details Design 3. The numbers correspond to the

order in which each structure is accessed. Design 3 is made

up of three main components, the per-CU post-coalescer L1

TLBs, the highly-threaded page table walker, and a shared

page walk cache, discussed below.

Per-CU post-coalescer L1 TLBs—Each CU has a private

TLB that is accessed after coalescing and scratchpad

memory to leverage the traffic reduction. On TLB hits, the

memory request is translated then forwarded to the L1

cache. On TLB misses, the warp instruction is stalled until

the shared page walk unit completes the page table lookup

and returns the virtual to physical address translation.

Stalling at this point in the pipeline is common for memory

divergent workloads, and the associated hardware is already

present in the CUs.

Highly-threaded page table walker—The PTW design

consists of a hardware state machine to walk the x86-64

page table and a set of page walk buffers that hold the

current state of each outstanding page walk, shown in

Figure 9. On a TLB miss, the page walk state machine

allocates a page walk buffer entry and initializes the

outstanding address to the value in the CR3 register, which

holds the address of the root of the page table. Next, the

page walk state machine issues the memory request

corresponding to the buffer entry. When memory responds,

the page walk buffers are queried for the match, and the

state for that request is sent to page walk state machine,

which then issues the next memory request or returns final

translation.

The PTW also has supporting registers and logic to handle

faults that occur when walking the page table. Concurrent

page faults are serialized and handled one at a time by the

operating system. Page faults are discussed in detail in

Section 5.1

This design can also extend to other ISAs that have

hardware page table walkers. For example, the ARM MMU

also defines a hardware page table walker and this can be

used in place of the x86-64 page walk state machine

included in our current design.

Page walk cache—Many modern CPUs contain a small

cache within the memory management unit to accelerate

page table walks. Since the latency of the L2 cache of a

GPU is very long (nearly 300 cycles) a cache close to the

MMU decreases the page walk latency significantly. We use

a page walk cache design similar to AMD [3]. It caches

non-leaf levels of the page table, decreasing the number of

L2 cache and DRAM accesses required for a page table

walk. Other page walk cache designs are discussed in

Figure 8: Miss rate for a 128 entry per-CU L1 TLB averaged

across all CUs.

Page walk buffers

Page walk
state machine

Outstanding addr State
Outstanding addr State
Outstanding addr State
Outstanding addr State

Outstanding addr State

From memory To memory

TLB TLB TLBPer-CU TLBs:

Figure 9: Details of the highly-threaded page table walker

Section 6.2. However, we do not see a significant perfor-

mance improvement over Design 3 with these alternatives.

5. Correctness Issues

In this section, we discuss the issues and implementation

of page faults and TLB shootdown for the GPU architecture.

We expect these events to be rare. For instance, often

workloads are sized to fit in main memory virtually

eliminating major page faults. Nevertheless, we correctly

implement page faults and TLB shootdown in Linux 2.6.22

on top of gem5 full-system simulation, to our knowledge a

first in public literature.

 Page fault handling 5.1.

Although rare, the GPU memory management unit archi-

tecture must be able to handle page faults to have correct

execution. Although there are many ways to implement

handling page faults, in this GPU MMU architecture we

chose to slightly modify the CPU hardware by changing the

interrupt return microcode and adding hardware registers to

support GPU page faults. With these changes, the GPU

MMU can handle page faults with no modifications to the

operating system. Our page fault handling logic leverages

the operating system running on the CPU core similar to

CPU MMU page fault logic. We use this design for two

reasons. First, this design does not require any changes to

the GPU execution hardware as it does not need to run a

full-fledged operating system. Second, this design does not

require switching contexts on the GPU as it can handle

minor page faults by stalling the faulting instruction. Details

of our page fault implementation can be found in the

appendix and the gem5-gpu repository [14].

There are two different categories of page faults, major

and minor. Below we give details on how each is handled.

Minor page faults—A minor page fault occurs when the

operating system has already allocated virtual memory for

an address, but it has not yet allocated a physical frame and

written the page table. Minor page faults often occur when

sharing virtual memory between processes, copy-on-write

memory, and on the initial accesses after memory alloca-

tion. The last is common in our workloads as there are many

large calls to malloc in which the memory is not touched by

the CPU process. As an example, in Figure 3c, h_out is

allocated by the CPU process, but is not accessed until the

copyVector kernel and causes a minor page fault.

Minor page faults are low latency, about 5000 cycles on

average in our workloads. The operating system only needs

to allocate a physical frame and modify the page table with

the new physical page number. Since the page fault is low

latency, we stall the faulting warp instruction in the same

way as a TLB miss.

Major page faults—For major page faults, the operating

system must perform a long-latency action, such as a disk

access. Stalling an application for milliseconds—while

likely correct—wastes valuable GPU execution resources.

To handle this case, the GPU application, or a subset

thereof, could be preempted similar to a context switch on a

CPU. However, this technique has drawbacks since the

GPU’s context is very large (e.g., 2 MB of register file on

NVIDIA Fermi [25]). Another possibility is to leverage

checkpointing, and restart the offending applications after

the page fault has been handled. There are proposals like

iGPU [21] to reduce the overhead of these events. However,

none of our workloads have any major page faults so we do

not focus on this case.

Page fault discussion—We implemented a hardware-

based technique to handle page faults in the gem5 simulator

running Linux in full-system mode. Using this implementa-

tion, the Linux kernel correctly handles minor page faults

for all of our GPU applications.

For this implementation, the page fault handling logic

assumes that the GPU process is still running on the CPU

core. This will be true if the application can run on the CPU

and GPU at the same time, or the CPU runtime puts the

CPU core into a low power state and does not change

contexts.

However, the CPU runtime may yield the CPU core while

the GPU is running. In this situation, page faults are still

handled correctly, but they are longer latency since the CPU

core must context switch to the process which spawned the

GPU kernel before the operating system begins handling the

page fault. An alternative option is to include a separate

general purpose core to handle operating system kernel

execution for the GPU. This core can then handle any page

faults generated by the running kernel.

 TLB Flushes and shootdown 5.2.

The GPU MMU design handles TLB flushes similarly to

the CPU MMU. When the CR3 register is written on the

CPU core that launched the GPU application, the GPU

MMU is notified via inter-processor communication and all

of the GPU TLBs are flushed. This is a rare event, so

performance is not a first order concern. Since there is a

one-to-one relation between the CPU core executing the

CPU process and the GPU kernel, on TLB a shootdown to

the CPU core, the GPU TLBs are also flushed. The GPU

cannot initiate a shootdown, only participate. When a CPU

initiates a shootdown, it sends a message to the GPU MMU

which responds after it has been handled by flushing the

TLBs. If the GPU runtime allows the CPU processes to be

de-scheduled during GPU kernel execution, TLB flushes

and shootdown become more complicated. However, this

can be handled in a similar way as page faults. If TLB

shootdown to GPU CUs becomes common, there are many

proposals to reduce the overheads for TLB shootdown [31,

35].

6. Alternative Designs

Here, we discuss some alternative designs we considered

as we developed our proof-of-concept design. These design

either do not perform as well or are more complex than

Design 3. We first evaluate the addition of a shared L2 TLB

and then alternative page walk cache designs. Next, we

discuss adding a TLB prefetcher and the impact of large

pages. Finally, we consider the impact of alternative MMU

designs on area and energy.

 Shared L2 TLB 6.1.

A shared L2 TLB can capture multiple kinds of data

sharing between execution units [5]. This cache can exploit

sharing of translations between separate CUs, effectively

prefetching the translation for all but the first CU to access

the page. The shared L2 TLB can also exploit striding

between CUs where the stride is within the page size (e.g.,

CU 1 accesses address 0x100, CU 2 0x200, etc.).

The shared L2 TLB is most effective when each entry is

referenced by many CUs. Figure 10 shows the number of

CUs that access each L2 TLB entry before eviction. 16

sharers show all CUs share each entry, and one sharer shows

no overlap in the working sets. Figure 10 shows most

applications share each L2 TLB entries with many CUs and

some share entries with all CUs. In these cases, the shared

L2 TLB can improve performance by sharing the capacity

of the L2 TLB between CUs.

Due to this potential, we investigated two MMU designs

with shared L2 TLBs. The first design (Shared L2) has

private L1 TLBs with a shared L2 TLB and no page walk

cache. In this design the area that is devoted to the page

walk cache in Design 3 is instead used for the L2 TLB. The

second design we evaluate (Shared L2 & PWC) contains

private L1 TLBs, a shared L2 TLB, and a page walk cache.

In this design each L1 TLB size is reduced to accommodate

an L2 TLB. All of the designs evaluated use a total of 16

KB of storage for their implementation.

Figure 11 shows the performance of these two designs

relative to an ideal MMU in the first two bars. Parameters

for each configuration are in Table 2.

Shared L2—per-CU private L1 TLBs and a shared L2

TLB: With a shared L2 TLB, many applications perform as

well as the ideal, like Design 3 (Figure 11 leftmost bars in

blue). However, bfs, nw, and sort perform at least 2x worse.

For these applications, decreasing the page walk latency is

very important as the L1 TLBs experience a high miss rate.

nn sees a slowdown when using the Shared L2 design

because there is no sharing of TLB entries between CUs.

Thus, area dedicated to a page walk cache is more useful for

this workload. On average, there is more than a 2x slow-

down when using a shared L2 TLB instead of a page walk

cache.

Shared L2 & PWC—per-CU private L1 TLBs, a shared

L2 TLB, and a page walk cache: The second bars (green) in

Figure 11 show the performance with both a shared L2 TLB

and a page walk cache compared to an ideal MMU. In this

configuration, even though the L1 TLB size is reduced,

performance does not significantly decrease; the average

performance is within 0.1%. Using both a shared L2 TLB

and a page walk cache achieves the benefits of both: it takes

advantage of sharing between CUs and reduces the average

page walk latency. We chose to not include an L2 TLB in

our proof-of-concept design as it adds complexity without

affecting performance.

 Alternative Page Walk Cache Designs 6.2.

In this work, we use a page walk cache similar to the

structure implemented by AMD [3]. In this design, physical

addresses are used to index the cache. Other designs for a

page walk cache that index the cache based on virtual

addresses, including Intel-style translation caches, have

been shown to increase performance for CPUs [2]. We

chose to use an AMD-style page walk cache primarily for

ease of implementation in our simulator infrastructure.

To evaluate the possible effects of other page walk cache

designs, we evaluated our workloads with an ideal (infinite-

ly sized) page walk cache with a reduced latency to model a

single access, the best case for the translation cache. The

rightmost (brown) bars in Figure 11 show the performance

with a 64 entry L1 TLB and the ideal page walk cache

compared to an ideal MMU. The ideal page walk cache

increases performance by an average of 1% over our proof-

of-concept Design 3. For bfs the ideal page walk cache

increases performance by a more significant 10% over

Design 3 as this workload is sensitive to the page walk

latency. From this data, a different page walk cache design

may be able to increase performance, but not significantly.

 TLB prefetching 6.3.

We evaluated Design 3 with the addition of a one-ahead

TLB prefetcher [18]. The TLB prefetcher issues a page walk

for the next page on each L1 TLB miss and on each prefetch

buffer hit. The TLB prefetcher does not affect the perfor-

Figure 11: Performance of a shared L2 TLB and an ideal PWC

relative to ideal MMU. See Table 2 for details of configurations.

Figure 10: Sharing pattern for the 512 entry L2 TLB. 16 sharers

implies all CUs sharing each entry.

mance of our workloads. Prefetching, on average, has a less

than 1% impact on performance. One hypothesis as to the

ineffectiveness of TLB prefetching is the bursty-ness of

demand misses. Other, more complicated, prefetching

schemes may show more performance improvement, but are

out of the scope of this paper.

 Large pages 6.4.

Large pages reduce the miss rate for TLBs on CPUs. On

GPUs, due to the high spatial locality of accesses, large

pages should also work well. When evaluated, for all of our

workloads except gaussian, 2MB pages reduce the TLB

miss rate by more than 99%, resulting in more than 100

times fewer TLB misses. As previously mentioned, since

the working set for Gaussian fits in the TLB, large pages do

not provide as much benefit, although the miss rate is

reduced by over 80%.

Large pages work well for the workloads under study in

this paper, but may not perform as well for future, larger

memory footprint, workloads. Additionally, to maintain

compatibility with today’s CPU applications, the MMU

requires 4 KB pages. Alternatively, requiring applications to

use large pages would place a burden on the application

developer to use a special allocator API for memory that is

accessed by the GPU.

 Energy and area 6.5.

Figure 12 shows the relative area and energy of the MMU

for a subset of designs. We used a combination of Cacti [22]

and McPAT [19] to determine relative area and dynamic

access energy of each structure.

Figure 12a shows that all configurations are less area than

the L1 TLB-only Design 2. This is because Design 2 has

many large and highly associative TLBs, one per CU. The

other configurations that share structures can amortize the

overheads and provide higher performance. The shared L2

design is much more energy hungry than the other configu-

rations. This is because the L1 TLBs do not filter a large

percentage of requests (the average miss rate is 27%) and

accesses to a large associative structure are high energy.

Design 3 with only a page walk cache shows a modest

energy reduction (20%) and increases performance signifi-

cantly over the Design 2. This energy reduction comes from

having smaller highly associative structures (L1 TLBs) and

a larger lower associativity structure (the page walk cache).

The design with both a page walk cache and shared L2 TLB

(Shared L2 & PWC) has the smallest area, but has a modest

energy increase (25%) over Design 2. Here, there is a

tradeoff between energy and area reduction.

7. Related Work

In this work we build on research accelerating CPU

MMUs. Page walk caches and translation caches improve

MMU performance by accelerating the page table walk [3,

39]. Barr et al. explored other MMU cache structures as

well and found that a unified translation cache can outper-

form both the page walk cache and the translation cache [2].

Sharing resources between CPU cores has been studied as

a way to decrease CPU TLB miss rate. Bhattacharjee and

Martonosi examine a shared last level TLB [7] and a shared

page walk cache [4]. These accelerate multithreaded

applications on the CPU by sharing translations between

cores. These works target multithreaded applications on the

CPU and apply similarly to the GPU since, in the common

case, all CUs of the GPU are running the same application.

There are also several patents for industrial solutions for

GPU virtual address translation [11, 36]. However, these

patents have no evaluation and little implementation details.

There are multiple attempts to reduce the complexity of

the GPGPU programming model through software [13, 32].

While these frameworks simplify the code for straightfor-

ward applications, like the UVA implementation of the

vectorcopy example presented, it is still difficult to

represent complex data structures.

GPUfs presents a POSIX-like API for the GPU that allows

the GPU to access files mapped by the operating system.

Similar to GPUfs, this paper simplifies programming the

GPU by providing developers with a well-known interface

(shared virtual address space). Additionally, as a conse-

quence of correctly handling page faults on the GPU, this

paper also provides a method for the GPU to access files.

GPUfs accomplishes these goals on current hardware

through a complicated software library whereas this paper

implements solutions for future hardware similar to how

conventional CPUs solve these problems.

Concurrent with our work, Bharath et al. also investigate

address translation for GPGPUs [26]. Both papers show that

modest hardware changes can enable low-overhead GPU

address translation, but with different designs and emphasis.

For example, Bharath et al. use a 4-ported TLB and PTW

scheduling, while we use a single-ported TLB and highly-

threaded PTW. Bharath et al. additionally explore address

translation effects on GPU warp scheduling, while we

explore MMU correctness issues, like page faults, in a CPU-

GPU system using gem5-gpu full-system simulation.

8. Conclusions

As GPGPUs can issue 100s of per-lane instructions per

cycle, supporting address translation appears formidable.

Our analysis, however, shows that a non-exotic GPU MMU

design performs well with commonly-used 4 KB pages: per-

Figure 12: Energy and area of MMU configurations relative to

Design 2

CU post-coalescer TLBs, a shared 32-way highly-threaded

page table walker, and a shared page walk cache. We

focused on the x86-64 ISA in this work. However, our

findings generalize to any ISA with a hardware walked and

tree-based page table structure. The proof-of-concept GPU

MMU design analyzed in this paper shows that decreasing

the complexity of programming the GPU without incurring

significant overheads is possible, opening the door to novel

heterogeneous workloads.

9. Acknowledgements

This work is supported in part by the National Science

Foundation (CCF-1017650, CNS-1117280, CCF-1218323

and CNS-1302260) and a University of Wisconsin Vilas

award. The views expressed herein are not necessarily those

of the NSF. Professors Hill and Wood have significant

financial interests in AMD. The authors would like to

acknowledge Brad Beckmann, Karu Sankaralingam,

members of the Multifacet research group, and our anony-

mous reviewers for their comments on the paper.

References
[1] Bakhoda, A. et al. 2009. Analyzing CUDA workloads using a

detailed GPU simulator. Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium on

(Apr. 2009), 163–174.

[2] Barr, T.W. et al. 2010. Translation caching: Skip, Don’t Walk (the
Page Table). Proceedings of the 37th annual international

symposium on Computer architecture - ISCA ’10 (New York,

New York, USA, 2010), 48.
[3] Bhargava, R. et al. 2008. Accelerating two-dimensional page walks

for virtualized systems. Proceedings of the 13th international

conference on Architectural support for programming languages
and operating systems - ASPLOS XIII (New York, New York,

USA, 2008), 26.

[4] Bhattacharjee, A. 2013. Large-reach memory management unit
caches. Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture - MICRO-46 (New York, New

York, USA, 2013), 383–394.
[5] Bhattacharjee, A. et al. 2011. Shared last-level TLBs for chip

multiprocessors. 2011 IEEE 17th International Symposium on

High Performance Computer Architecture. (Feb. 2011), 62–63.
[6] Bhattacharjee, A. and Martonosi, M. 2009. Characterizing the TLB

Behavior of Emerging Parallel Workloads on Chip

Multiprocessors. 2009 18th International Conference on Parallel
Architectures and Compilation Techniques (Sep. 2009), 29–40.

[7] Bhattacharjee, A. and Martonosi, M. 2010. Inter-core cooperative

TLB Prefetchers for chip multiprocessors. Proceedings of the
fifteenth edition of ASPLOS on Architectural support for

programming languages and operating systems - ASPLOS ’10

(New York, New York, USA, 2010), 359.
[8] Binkert, N. et al. 2011. The gem5 simulator. ACM SIGARCH

Computer Architecture News. 39, 2 (Aug. 2011), 1.

[9] Che, S. et al. 2009. Rodinia: A benchmark suite for heterogeneous
computing. 2009 IEEE International Symposium on Workload

Characterization (IISWC). 2009, (Oct. 2009), 44–54.

[10] Chip problem limits supply of quad-core Opterons: 2007.
http://techreport.com/news/13721/chip-problem-limits-supply-of-

quad-core-opterons. Accessed: 2013-03-09.

[11] Danilak, R. 2009. System and method for hardware-based GPU
paging to system memory. U.S. Patent #7623134. 2009.

[12] envytools: 2013.

https://github.com/pathscale/envytools/blob/master/hwdocs/mem
ory/nv50-vm.txt.

[13] Gelado, I. et al. 2010. An asymmetric distributed shared memory

model for heterogeneous parallel systems. Proceedings of the
fifteenth edition of ASPLOS on Architectural support for

programming languages and operating systems - ASPLOS ’10

(New York, New York, USA, Mar. 2010), 347.
[14] gem5-gpu: http://gem5-gpu.cs.wisc.edu.

[15] Juan, T. et al. 1997. Reducing TLB power requirements. Proceedings

of the 1997 international symposium on Low power electronics
and design - ISLPED ’97 (New York, New York, USA, 1997),

196–201.

[16] Kadayif, I. et al. 2002. Generating physical addresses directly for
saving instruction TLB energy. 35th Annual IEEE/ACM

International Symposium on Microarchitecture, 2002. (MICRO-

35). Proceedings. (2002), 185–196.
[17] Kandiraju, G.B. and Sivasubramaniam, A. 2002. Characterizing the d

-TLB behavior of SPEC CPU2000 benchmarks. Proceedings of

the 2002 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems -

SIGMETRICS ’02 (New York, New York, USA, 2002), 129.

[18] Kandiraju, G.B. and Sivasubramaniam, A. 2002. Going the distance

for TLB prefetching. ACM SIGARCH Computer Architecture

News. 30, 2 (May. 2002), 195.

[19] Li, S. et al. 2009. McPAT : An Integrated Power , Area , and Timing
Modeling Framework for Multicore and Manycore Architectures.

42nd Annual IEEE/ACM International Symposium on

Microarchitecture (2009), 469–480.
[20] McCurdy, C. et al. 2008. Investigating the TLB Behavior of High-end

Scientific Applications on Commodity Microprocessors. ISPASS
2008 - IEEE International Symposium on Performance Analysis

of Systems and software (Apr. 2008), 95–104.

[21] Menon, J. et al. 2012. iGPU. ACM SIGARCH Computer Architecture
News. 40, 3 (Sep. 2012), 72.

[22] Muralimanohar, N. et al. 2009. CACTI 6.0: A Tool to Model Large

Caches.
[23] Nickolls, J. and Dally, W.J. 2010. The GPU Computing Era. IEEE

Micro. 30, 2 (Mar. 2010), 56–69.

[24] NVIDIA 2011. NVIDIA CUDA C Programming Guide Version 4.0.
Changes.

[25] NVIDIA 2009. NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi.
[26] Pichai, B. et al. 2013. Architectural Support for Address Translation

on GPUs.

[27] Power, J. et al. 2014. gem5-gpu: A Heterogeneous CPU-GPU
Simulator. Computer Architecture Letters. 13, 1 (2014).

[28] Rogers, P. et al. 2013. AMD heterogeneous Uniform Memory

Access. AMD.
[29] Rogers, P. 2013. Heterogeneous System Architecture Overview. Hot

Chips 25 (2013).

[30] Rogers, P. 2011. The programmer’s guide to the apu galaxy.
[31] Romanescu, B.F. et al. 2010. UNified Instruction/Translation/Data

(UNITD) coherence: One protocol to rule them all. HPCA - 16

2010 The Sixteenth International Symposium on High-
Performance Computer Architecture (Jan. 2010), 1–12.

[32] Rossbach, C.J. et al. 2011. PTask. Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles - SOSP ’11
(New York, New York, USA, 2011), 233.

[33] Sodani, A. 2011. Race to Exascale: Opportunities and Challenges

Intel Corporation.

[34] Stoner, G. 2012. HSA Foundation Overview. HSA Foundation.

[35] Teller, P.J. 1990. Translation-lookaside buffer consistency.

Computer. 23, 6 (Jun. 1990), 26–36.
[36] Tong, P.C. et al. 2008. Dedicated mechanism for page mapping in a

gpu. U.S. Patent #US20080028181. 2008.

[37] Wong, H. et al. 2010. Demystifying GPU microarchitecture through
microbenchmarking. 2010 IEEE International Symposium on

Performance Analysis of Systems & Software (ISPASS). (Mar.

2010), 235–246.
[38] 2011. AMD I/O Virtualization Technology (IOMMU) Specification.

[39] 2013. Volume 3A: System Programming Guide Part 1. Intel® 64 and

IA-32 Architectures Software Developer’s Manual. 4.35–4.38.

Appendix: GPU Page Fault Handler Imple-

mentation

Although rare, the GPU memory management unit archi-

tecture must be able to handle page faults to have correct

execution. Although there are many ways to implement

handling page faults, in this GPU MMU architecture we

chose to slightly modify the CPU hardware and make no

modifications to the operating system. Our page fault

handling logic leverages the operating system running on

the CPU core similar to CPU MMU page fault logic. We

use this design for two reasons. First, this design does not

require any changes to the GPU execution hardware as it

does not need to run a full-fledged operating system.

Second, this design does not require switching contexts on

the GPU as it can handle minor page faults by stalling the

faulting instruction.

The only CPU change necessary is modification of the

microcode that implements the IRET (return from interrupt)

instruction. When a page fault is detected by the page table

walker logic, the address which generated the fault is

written into the page fault register in the GPU page walk

unit. Then, the page fault proceeds similar to a page fault

generated by the CPU MMU. The faulting address is written

into the CPU core’s CR2 register, which hold the faulting

address for CPU page faults, and a page fault interrupt is

raised. Then, the page fault handler in the operating system

runs on the CPU core. The operating system is responsible

for writing the correct translation into the page table, or

generating a signal (e.g. SEGFAULT) if the memory

request is faulting. Once the page fault handler is complete,

the operating system executes an IRET instruction on the

CPU core to return control to the user-level code. To signal

the GPU that the page fault is complete, on GPU page

faults, we add a check of the GPU page fault register in the

IRET microcode implementation. If the address in that

register matches the CR2 address then the page fault may be

complete (it is possible the operating system could have

finished some other interrupt instead). To check if the page

fault is complete, the page walk unit on the GPU performs a

second page table walk for the faulting address. If the

translation is found, then the page fault handler was

successful and the page fault register on both the page walk

unit and the CPU are cleared. If the second page walk was

not successful then the GPU MMU continues to wait for the

page fault handler to complete.

There are two different categories of page faults, major

and minor. Details of each are discussed in Section 5.1.

Page fault discussion

We implemented the above technique to handle page

faults in the gem5 simulator running Linux in full-system

mode. Using this implementation, the Linux kernel correctly

handles minor page faults for all of our GPU applications.

For this implementation, the page fault handling logic

assumes that the GPU process is still running on the CPU

core. This will be true if, for instance, the application can

run on the CPU and GPU at the same time, or the CPU

runtime puts the CPU core into a low power state and does

not change contexts.

However, the CPU runtime may yield the CPU core while

the GPU is running. In this situation, page faults are still

handled correctly, but they are longer latency as there is a

context switch to the process which spawned the GPU work

before the operating system begins handling the page fault.

This is similar to what happens when other process-specific

hardware interrupts are encountered. Another option is to

include a separate general purpose core to handle operating

system kernel execution for the GPU. This core can handle

any page faults generated by the running GPU kernel in the

same way as described above.

CPU core

GPU MMU

CR3

CR2

CR3

PF register

Page table

Figure 13: Page walk and page fault overview

