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Abstract—In this paper we propose a microarchitectural tech-
nique called Constant Average Power Processing (CAPP) that
reduces the execution time of parallel programs by dynamically
detecting the power slack at runtime and directing it to specific
core(s) that are the bottleneck at any given time. The key insight
of this work is that by sensing the current, communicating it to
the global controller and adjusting the cores’ frequencies, it is
possible to maintain a constant power level in a distributed and
scalable manner. We evaluate the potential benefits and scalability
of the proposed technique on a set of synthetic benchmarks and
compare the results with related work such as Running Average
Power Limit (RAPL).

I. INTRODUCTION

In CMOS technology today there is a significant gap

between the peak clock frequency and the nominal clock

frequency of a core. This gap gets wider as the number of

cores on a die increases, because the fixed power input has

to be shared by a larger number of cores - this means the

cores themselves have to be operated at a lower nominal

frequency. Though a core cannot sustain higher frequencies

for all possible instruction mixes, certain power headroom can

be used to provide elevated frequencies. This is the approach

used by Intel’s Running Average Power Limit (RAPL), as

described in [15] and [3]. Here, an on-die microcontroller and

associated firmware called the Package Control Unit (PCU)

estimates the power consumption of each core based on the

instruction mix and uses that information to boost the clock

frequency of the cores up to the power limit. RAPL controls

the hardware through firmware which results in adaptation

interval anywhere from tens of microseconds to milliseconds

which misses some fine grained load imbalances. Furthermore,

the centralized PCU used in RAPL limits the scalability of the

approach, especially when the number of cores is large.

The objective of the work presented here is to overcome

these drawbacks and develop a power management architec-

ture and implementation strategy that (a) operates at a time

scale on the order of hundreds of nanoseconds due to a fully

hardware-based implementation, and (b) features a distributed

implementation in order to improve scalability.

We call this proposed power management method Constant

Average Power Processing (CAPP), which maximizes the

performance of a chipscale multiprocessor by measuring the

current draw from the power rails to determine the available
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Fig. 1: High Level Overview of Multi-tier Power Limiting and

Power Shifting Scheme in a Datacenter.

slack (the difference between the power target and the actual

power draw). This slack is used when calculating the appro-

priate voltage to put on the global voltage rail - the more

(or less) slack there is, the higher (or lower) the voltage will

be. This voltage is read by a local controller at each core,

which can employ a variety of local metrics such as IPC,

queue sizes, local temperature, etc. to determine the per core

voltage (and frequency) to use. This value can be higher than

the nominal voltage if the controller determines that there is

sufficient slack and there is work to be done, or it may be

lower if the controller decides the local processor has little or

nothing to do.

CAPP is a pure hardware-based approach with a control

interval of hundreds of nanoseconds to allow the detection

of fine grain load imbalances and dynamically divert power

from cores that are stalled to cores that are active. The goal

of CAPP is not to minimize power, but rather to maximize
performance by constantly consuming the target amount of

power. In CAPP there is an explicit attempt not to leave any
power unused from the power budget, if there is an opportunity

to use it to improve the performance. In this sense, CAPP acts

as a faster hardware-based decentralized version of RAPL.

We begin by describing the high level architecture and

principle of operation of CAPP in Section II and our evaluation

methodology in Section III. Next, we evaluate the performance

of CAPP on a set of synthetic benchmarks to verify that it

works as intended, as well as the potential benefits on future

applications. Finally, we close the paper with related work,

and conclusions and some directions for future work.

II. CAPP FRAMEWORK DETAILS

Datacenters or warehouse-scale computers [2] are emerg-

ing as an important class of computers that require high-
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Fig. 2: CAPP: High Level Architecture

performance computing with a constant power limit. We

consider a multi-tier power provisioning and management

scheme in a typical datacenter as shown in Figure 1. The main

datacenter-level power controller monitors the power usage

and sets a power budget for each rack (a cluster of computers).

The rack/cluster-level power manager sets the power target

(PTARGET ) for a computing device in the server. As stated

previously, the goal of CAPP is to deliver the maximum
performance from each server for the given power target.

CAPP works by measuring the server’s global voltage rail

current draw I(t) (i.e., the total current drawn by all of

the computing elements) through a Voltage Regulator (VR)

integrated with current sensing such as [1]. The current sensing

circuitry detects and amplifies the sense voltage and provides

that value to the CAPP global voltage controller, which uses

that information to calculate the ideal global supply voltage

that will maintain the target power level.

There are 3 main components to CAPP - the current sensing

circuitry, the global controller (GC), and the local controller

(LCj) at each system unit (SUj). The local controller can be a

passive passthrough (one level controller CAPP), or it can use

a variety of metrics such as IPC (two level controller CAPP).

A system unit can be a core, a cluster of cores, or a special

function unit such as a GPU or accelerator - we will focus on

a homogeneous chip-scale multiprocessor where the system

unit is a processor core.

Every power control epoch (T), the following set of closed

loop actions occur: Changes in activity in system unit SUj

cause a change in the current draw I(t) sensed by the VR and

detected by the GC, which results in the GC setting the target

voltage (VG(T )) for the next epoch. The local controllers use a

combination of (VG(T )), their own local metric vector (LMj),

the settings of some runtime/programmer-visible registers, and

a set of metrics such as the IPC to set their local voltage

(Vj(T )) and frequency (Fj(T )).
One of the main benefits of CAPP is that it is not a one-

size-fits-all scheme - each local controller can choose its own

metrics and make local decisions based on its recent behavior

or workload projections.

a) Assumptions and Implementation Issues: The duration

of the epoch (T ) is chosen so that the system is stable, i.e. all

voltages have a chance to settle to their new values. Hence T
depends on the actual resistance, capacitance, and inductance

of the power supply network. As explained in Section III,

we use a conservative value of 1 microsecond or higher in

our other simulations. The proposed decentralized voltage

controlled system makes the system units asynchronous with

respect to each other in terms of clocking, which could result
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Fig. 3: Simulated supply voltage (blue) and power (red).

in timing violations if not properly addressed. We make two

reasonable assumptions to avoid these problems - first, we

assume that there is a local voltage guardband that ensures

correct operation, and second we assume an adaptive clock

scheme [10]. Adaptive clocking uses a local oscillator, such

as an inverter ring, that operates at the same voltage as the rest

of the system unit. This oscillator provides the clock signals

used throughout the system unit - thus, the clock frequency

will slow down when the voltage drops ensuring no timing

errors occur.

b) Proof of Concept - Hardware Verification: In order

to evaluate a CAPP implementation using a realistic global

voltage controller cycle time (∼300 ns) we performed a Ca-

dence Spectre simulation with high-current Verilog-A “core”

models and a full implementation of the global controller.

Figure 3 shows the supply voltage changes over the course

of the simulation. Each “core” turns on in sequence and then

turns off in sequence. Drops (and subsequent rises) in the

supply voltage are seen for each of the “core” activity changes.

These drops take place over several steps due to the choices

of the Proportional Integral Derivative (PID) coefficient used

within the global controller. Figure 3 shows the power during

this simulation. Despite moderate spikes at voltage transition

times due to the charging of the capacitors in the power

supply network, the controller enforces the power target of

50 watts when possible. It exceeds the power target for short

durations when the “cores” turn on, but quickly readjusts to

match the power limit in the steady state (within an acceptable

error margin). Overall, this simulation demonstrates that the

hardware of CAPP functions as expected. The global voltage

controller raises and lowers the global voltage in response

to changes in the activity of the “cores”, and these voltage

changes keep the total power near the power target.

In summary, CAPP can be viewed as a simple, scalable, and

more flexible (because the local controller at each system unit

can be customized to meet its unique requirements) framework

to maximize performance given a power constraint.

III. EVALUATION METHODOLOGY

In order to evaluate the performance impact of CAPP,

we modified Sniper version 6.0 [6] so that we could do

full closed-loop power simulations. Sniper is a multi-core

simulator that uses instruction instrumentation and instruction

intervals to accelerate simulation. Because Sniper does not

execute an entire program in cycle level accurate mode, there

is a maximum execution time variation of approximately 3%.

In order to evaluate the power consumed when using CAPP,

we had to do closed-loop power simulations over periods as

short as 300 nanoseconds. We extracted the power model

for our target processor from McPAT version 1.3 [11] and
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TABLE I: Breakdown of delays for CAPP transitions

Component Transition time (ns)
Voltage Regulator 36-226

Sensing Circuitry 50-60

Controller 10-30

Power Supply Network 3-15

Total 99-331

embedded it within Sniper. These changes were verified using

McPAT and match to within 2% (this is below the variability

of the Sniper execution).

We created Python scripts to implement the local con-

trollers. The CAPP Python script calls the Sniper embedded

power model to calculate the chip-level power, which the

global voltage controller model within the Python script uses

to determine future behavior.

The local voltage controllers use thresholds specific to the

particular metric in order to determine whether to increase,

decrease or maintain a voltage ratio. This voltage ratio is

multiplied by the global voltage and matched to the highest

frequency that can be run at that voltage. For example, a local

voltage controller on Hi-IPC would raise the ratio if the IPC

is above 0.6 and would lower the ratio if the IPC is below 0.3.

For this paper, we used IPC as the local control metric for the

2 level CAPP with the thresholds of 0.6 and 0.3.

We used a Nehalem model for the cores in the Sniper

simulations. The frequency of the cores can range from 2

GHz to 800 MHz at voltages from 1.2 volts to 0.8 volts

(respectively). The configuration details were taken from the

pre-existing configuration files within Sniper. Based on early

simulation feedback, we allow the maximum global voltage to

go up to 1.5 Volts - this allows the global voltage controller to

push the frequencies of the cores upward (despite their ratios)

when additional power is available.

In order to calculate a reference case for CAPP, we used

a fixed frequency configuration of the same Sniper Nehalem-

based system. We selected a frequency of 1.5 GHz, which

was in the middle of the core’s possible frequencies, to

provide a reasonable margin for increasing frequency. Then,

we measured the maximum power used by the fixed frequency

system for a range or workloads. We also ran simulations using

the maximum allowable frequency for the Nehalem cores,

according to the processor model provided with Sniper (2

GHz). Running at this speed highlights the maximum possible

performance that could be achieved on a particular workload.

Once the baseline and ceiling configurations were selected,

we defined the parameters for CAPP, starting with the global

voltage controller cycle time. Based on both individual compo-

nent simulations and references from the literature, we calcu-

lated the roundtrip time of a CAPP update to the global voltage

passing through the entire system (the range of possible times

are shown in Table I). The voltage regulator delay is derived

from [5], while the operational amplifier delay was measured

using Cadence Spectre and the ADC delay was obtained

from Murmann’s ADC survey spreadsheet [13]. The controller

delay was approximated by implementing similar logic and

evaluating the delay using Spectre.
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Fig. 4: Normalized execution time of CAPP, the maximum

fixed frequency possible, and varying power vs. varying se-

quential to parallel ratios.

We calculated a range of 99 to 331 nanoseconds for the

CAPP control cycle time, so we used a very conservative

control cycle time of 1 microsecond for our performance

evaluations. This ensures that the performance evaluation of

CAPP reflects a realistic implementation by using a pessimistic

control cycle time.

IV. PERFORMANCE ANALYSIS OF CAPP

One of the main motivations for CAPP is to detect and

overcome serial bottlenecks continuously to reduce the execu-

tion time and improve scalability of parallel programs. Serial

sections are a problem, because according to Amdahl’s law

Equation, Speedup = 1 /( X + (1-X)/N) where X is the time

spent on the serial portion that cannot be sped up, and N is

the number of cores. In order to be able to evaluate CAPP’s

capability we need a controlled workload, where we can vary

the duration and distribution of critical sections. Thus, we

constructed a parameterized synthetic benchmark with a set

of parameters to control different aspects of the execution,

such as the length of the critical and parallel sections.

We wrote the synthetic benchmark in C++. The benchmark

has each core loop through a small kernel a set number of

times, separated by locks. The kernel behavior contains integer

operations, memory operations and a conditional branch.

When modeling a critical section, all cores run the kernel

for a set number of loops. Then, the lock begins and the first

core to get the lock completes a the kernel workload while

all other cores stop. Each other thread completes the serial

section under the lock until they are all done.

Figure 4 shows the execution time of CAPP using sin-

gle level and two level control strategies along side fixed

maximum frequency runs on a synthetic parallel workload

with a multiprocessor size of 8 cores. The execution times

have been normalized to the base fixed frequency 1.5GHz

cores. The results are grouped by the ratio of sequential

to parallel code that exists in the synthetic benchmark. The

power target of the CAPP systems is that of the peak power

utilized by the fixed 1.5GHz system. As one might expect, as

the sequential code increases the performance shifts toward

that of the maximum obtainable (this is due to the fact that

there is power slack in the system). The other point to note

is that while even the simple strategy improves performace,

the two level strategy consistently performs as well or better

than the simple single level strategy. This implies that local

knowledge can help further improve the global performance

on a particular workload.

Figure 4 also shows normalized execution time for an 8 core

CAPP with varing degrees of sequential and parallel time by
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Fig. 5: Normalized execution time of CAPP and MAX for

varying balance of non-critical to critical work.

power target. As one would expect, the performance increases

with both higher sequential time and also with a higher power

target. What is interesting is that CAPP is capable of about the

same performance as the baseline with a power target of only

60W. The baseline fixed frequency utilizes a peak of 86W, but

CAPP can obtain similar performance with ∼70% of the peak

power.

Figure 5 shows the balance of non-critical to critical work

varying on a synthetic benchmark. This represents an imbal-

anced parallel workload, and demonstrates that as the work

becomes more imbalanced the relative performance of CAPP

improves. (The Fixed 2GHz values are maximum values, and

are not obtainable due to excess power consumption.)

V. RELATED WORK

Power management in processors has been an active area

of research for more than a decade. See [16] for a detailed

survey of power management schemes, especially DVFS and

its variants. As mentioned before, classic DVFS is different

from what is proposed here since the goal of classic DVFS is to

minimize power consumption while satisfying a performance

constraint, while the goal of CAPP is maximizing performance

while staying with an average power budget. However, it is

important to note that the local controllers in CAPP can choose

to minimize power if they so desire (for example, when they

have no work to do). They don’t have to run as fast as the

voltage set by the global controller. Adrenaline [7], which

attempts to reduce the tail latency of Memcached queries by

voltage boosting, Rubik [9] which does fine grain voltage

scaling and boosting to reduce variability in latency in datacen-

tric workloads, both seek to maximize performance through

voltage changes in specific alternate scenarios. The use of

voltage/frequency islands (VFIs) is proposed in [12], [14],

which break a multiprocessor chip up into various independent

domains. These VFIs are controlled to minimize the energy

of the total system while maintaining a certain quality of

service (QoS) standard. Juang et al minimize the energy-delay

product (EDP) of a chip multiprocessor design by reducing the

power and slightly increasing the runtime [8]. A coordinated

and stable scheme for controlling DVFS results in reduced

frequencies without significant loss of performance. Ellsworth

et al use dynamic scheduling to enforce a system-level power

limit in an over-provisioned data center. [4]

VI. CONCLUSIONS AND FUTURE WORK

The technique proposed here is purely hardware. In the

future we plan to extend this approach to allow the OS to guide

the local controllers, to set their voltage and frequency based

on execution history of applications or user-hints. In this paper

we selected a the IPC metric to guide the local controller in

order to demonstrate the feasibility of the approach. However,

there may be other metrics that are more appropriate for

detecting fine grain critical sections.We intend to explore the

design space of these control strategies in the future.
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