
HCAPP: Scalable Power Control for Heterogeneous 2.5D
Integrated Systems

Kramer Straube
kkstraube@ucdavis.edu

University of California, Davis
Davis, California

Jason Lowe-Power
jlowepower@ucdavis.edu

University of California, Davis
Davis, California

Christopher Nitta
cjnitta@ucdavis.edu

University of California, Davis
Davis, California

Matthew Farrens
mkfarrens@ucdavis.edu

University of California, Davis
Davis, California

Venkatesh Akella
akella@ucdavis.edu

University of California, Davis
Davis, California

ABSTRACT
Package pin allocation is becoming a key bottleneck in the capabil-
ities of designs due to the increased bandwidth requirements. 2.5D
integration compounds these package-level requirements while in-
troducing an increased number of compute units within the package.
We propose a decentralized power control implementation called
Heterogeneous Constant Average Power Processing (HCAPP) to
maintain the power limit while maximizing the efficiency of the
package pins allocated for power. HCAPP uses a hardware-based
decentralized design to handle fast power limits, maintain scalabil-
ity and enable simplified control for heterogeneous systems while
maximizing performance. As extensions, we evaluate a software
interface and the impact of different accelerator designs. Overall,
HCAPP achieves 7% speedup over a RAPL-like implementation.
The power utilization improves from 79.7% (RAPL-like) to 93.9%
(HCAPP) with this design. A priority-based static software con-
trol methodology alongside HCAPP provides average speedups of
8.3% (CPU), 5.4% (GPU), and 12% (Accelerator) for the prioritized
component compared to the unprioritized version.

ACM Reference Format:
Kramer Straube, Jason Lowe-Power, Christopher Nitta, Matthew Farrens,
and Venkatesh Akella. 2020. HCAPP: Scalable Power Control for Heteroge-
neous 2.5D Integrated Systems. In 49th International Conference on Parallel
Processing - ICPP (ICPP ’20), August 17–20, 2020, Edmonton, AB, Canada.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3404397.3404448

1 INTRODUCTION
With the end of Moore’s Law and Dennard scaling [8], the focus in
the computer design community has shifted to application-specific
architectures [4]. These architectures provide promise for tech-
nology node agnostic speedups at the cost of program flexibility.
2.5D [7] and 3D integration [19] designs have arisen to combine
multipurpose designs, such as CPUs and GPUs, with targeted ac-
celerators. Intel [2] and AMD [1] have already announced 2.5D

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8816-0/20/08.
https://doi.org/10.1145/3404397.3404448

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 50,000 100,000 150,000 200,000
N

o
rm

al
iz

ed
 P

o
w

er

Time (μs)

Figure 1: Power usage of heterogeneous system running
workloads on all subcomponents in a static configuration
normalized to the average power.

integration designs. Under 2.5D integration, multiple chiplets ex-
ist within a single package. The package connects the silicon die
to the motherboard socket with small wires connected to larger
pins. These chiplets share the resources of the package, such as the
package pins.

The relative scarcity of package pins causes sacrifices in IO and
memory interfaces to allocate enough pins for power. The number
of pins on a package does not scale with the number of chiplets
added to a 2.5D system. Already, in larger designs, the fixed number
of pins is a budgeted resource [20]. The number of power pins
allocated must be selected based on the worst case package power
consumption. The extra pins provisioned for the worst case power
come at the cost of memory bandwidth and IO channels. Reducing
the provisioned power limit results in lower performance despite
freeing additional pins. The provisioned power limit is set by the
required performance of the design in the worst case scenario.

Maximizing the use of the provisioned power pins provides
additional performance without any additional package pins. The
goal in maximizing the utilization of the package power pins lies
in keeping the average power as close to the provisioned power
as possible without exceeding it. We introduce Provisioned Power
Efficiency (PPE) which determines how efficient a power control
design is at utilizing the package power pins.

The current problems limiting the design of a fast efficient power
control mechanism for 2.5D designs is three-fold:

(1) It is difficult to universally determine whether giving a com-
ponent additional power will result in a speedup. CPUs,

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3404397.3404448
https://doi.org/10.1145/3404397.3404448
https://creativecommons.org/licenses/by/4.0/


ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Straube et al.

Figure 2: Zoomed in section of the power draw from Figure 1
adjusted for different power limit time windows. Note that
the power peaks seen at the 20µs timewindow are not visible
at the other time windows. This represents power behavior
that firmware-based or software-based controllers could not
account for without guardbanding.

GPUs and accelerators can all have different relevant met-
rics for determining their ability to use additional power
effectively

(2) The time windows for power limit specifications for 2.5D
integrated designs are small. (10µs-10ms)

(3) Current power control methods cannot handle the increased
scale as 2.5D integrated systems continue to grow with
higher numbers of chiplets on a single interposer.

Difficult universal power-performance efficiency
prediction
Many power control methods, such as Intel’s Running Average
Power Limit (RAPL) or software-based power control methods,
determine the future settings of all components in a single controller.
The issue of how to determine power profiles and priority between
heterogeneous components is difficult. This issue is compounded
by the variety of 2.5D designs as different types of accelerators are
added or replaced. It is difficult to create a single algorithm that
properly controls the variety of component types. This algorithm
needs continual adjustment as new systems are designed with
different components.

Small time window for power limits
Power limits dictate a maximum power and a time window over
which that maximum power is evaluated. If this window did not
exist in the specification, then the current draw from capacitors
or other components could spike for an extremely short period of
time (such as 1 picosecond) to charge up but then drop to zero. The
specification focuses on specific time windows to prevent potential
issues such as the inability of a voltage regulator to source sufficient
current over a larger time window after internal capacitors handle
any exceedingly fast spikes. A dynamic scheme is necessary to
maximize the utilization of the provisioned power. Figure 1 shows
an example of the power draw of a chiplet-based design with a CPU,
GPU and SHA accelerator during a test with no power management
in a simulated environment. In these multi-chiplet systems, the
power becomes volatile due to the behavior of multiple different
architectures active simultaneously. The package power limits are
definedwith time intervals as short as tens ofmicroseconds. Figure 2
shows a section of the previous power draw over different time
windows. The grey curve shows the approximate time window

required for the package pin power limit (20µs) while the blue
curve and red curve show slower power limit time windows (1
ms and 10 ms). The grey curve remains the constraint even if the
measurement and control design cannot accurately control it, often
leading to large guardbands.

Software-based power control schemes operate on the order of
milliseconds. Thus, software-based dynamic power control schemes
cannot handle the fast time intervals in the power limit specifica-
tions enforced by the package pin constraint with the behavior of
the multi-chiplet system. The fast changing nature of the power in
the system requires a high-speed control mechanism. This requires
a hardware-based approach. Any centralized approach, such as
RAPL, requires enough time for the metrics to be aggregated at the
central controller.

Scaling with 2.5D integration
2.5D integration provides the opportunity to radically scale the
size of the system in a single package by using many chiplets. As
the number of chiplets increases, the number of components in
the system increases. With increasingly large systems, in terms
of number of compute components, centralized designs such as
Intel’s RAPL cannot scale easily. These centralized designs need to
aggregate metrics from each component to the controller. As the
designs increase in scale, the resources in the form of global wires
or buses cannot scale adaquately due to routing and congestion
issues. These are similar to the issues seen in on-chip networking
where crossbars and fully connected networks became inviable.

To solve these three issues, we propose a decentralized power
control scheme called Heterogeneous Constant Average Power
Processing (HCAPP). HCAPP leverages two main innovations to
improve the provisioned power efficiency and moderate the issues
enumerated above. First, each component has its own local con-
troller to intepret when and how to use any extra available power.
Trying to determine a centralized definition of the amount of work
that can be done with increased power consumption across the
many different possible component types (CPU core, GPU Cuda
core, Media accelerator, etc.) is difficult. Instead, those definitions
remain locally defined using specialized logic for that component
based on local metrics. Second, the use of the power supply net-
work to communicate using the universal language of voltage and
current. This overcomes the issues with global communication
without needing additional global bandwidth and maintaining a
fast reaction time through the use of a global power controller.
The lack of any additional global components allows HCAPP to
scale with larger 2.5D systems. As the scale increases, new com-
ponents will have local controllers and the overall control time of
HCAPP is dictated by the physical behaviors of the power supply
and distribution characteristics.

Figure 1 shows that for a fixed frequency the peak power is
60% higher than the average power giving a provisioned power
efficiency (PPE, defined formally in Section 5) of 62.5%. In this case,
the SoC designer must provision (pay) for 60% more pins for power
delivery than are used on average. HCAPP’s goal is to increase the
PPE bringing it closer to 1.0 which results in either saving money
by decreasing the number of pins or increasing performance for
the same number of pins. We show HCAPP achieves a higher PPE



HCAPP: Scalable Power Control for Heterogeneous 2.5D Integrated Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

(93.9% on average) than both the firmware-based RAPL scheme
(79.9% on average) and software-based capping scheme (69.2% on
average).

Throughout this paper, we present HCAPP as a scalable power
control implementation for heterogeneous 2.5D integrated systems.
HCAPP achieves 7% faster performance than a RAPL-like imple-
mentation while improving the provisioned power efficiency by
14.2%. HCAPP also provides an interface for software-based control.
A naive static software control scheme achieves speedups of 5-12%
with HCAPP over a software-less implementation.

In this paper, we explain the design of HCAPP in detail beginning
in Section 3. We define the experimental setup used for evaluat-
ing HCAPP including defining the target system in Section 4. We
evaluate three power capping techniques: HCAPP, a RAPL-like
implementation and a software-like implementation. For each of
these control implementations, we evaluate the maximum power,
speedup and provisioned power efficiency across a defined test
suite in Section 5. We also evaluate the impact of the software
interface within HCAPP and the impact of differing component
designs within the target system. Finally, we detail future areas to
investigate.

2 RELATEDWORK
Power capping is defined as maintaining a power limit for a system
that can exceed. The idea behind this approach is to underprovi-
sioned the system power relative to the worst case power and use
various methods to reduce the worst case power draw. Another re-
lated approach is power shifting. This approach shifts power within
a power constrained system to different components to improve
performance. HCAPP uses elements from both power capping and
power shifting to maximize performance under a power limit.

Turbo Boost and RAPL by Intel attempt to implement power
capping [9]. Turbo Boost by design exceeds the power cap and
instead maintains a thermal cap to improve performance. This in-
validates Turbo Boost for a power limited system. RAPL implements
power cap behavior by controlling the system power to a certain
value. RAPL uses a centralized controller to accumulate all of the
useful metrics from the various nodes (CPU cores, GPU stream-
ing multiprocessor, etc.) in the package. Using these metrics and
power information, the centralized controller assigns new configu-
ration information (often voltage and frequency assignments) to
each node in the system. RAPL’s design causes several issues in
the chiplet-based computing implementation. First, RAPL must use
slow control times due to the necessity of accumulating the metrics
from all areas of the package. This limits the ability of RAPL to
control the power for certain power limit time windows, such as
the power limit of the on-chip voltage regulator. Second, getting
the information from each node to the centralized controller re-
quires either separate global wires or shared resources, such as a
bus or a network. Both of these solutions cause issues of either wire
routing or congestion as the system continues to scale. Lastly, de-
signing a centralized controller with logic for how all of the system
metrics and power information can control the various nodes in
a system becomes increasingly difficult. Since the non-CPU, non-
GPU components will often change to enable speedups on a wide

variety of implementations, the controller must find ways to under-
stand the information from each different accelerator and how the
configuration for the entire system should change.

Other approaches outside DVFS exist using the ability to scale
voltage as a method to improve performance. Adrenaline [13] and
Rubik [14] scale the voltage to reduce work variability in datacenter
workloads. Harmonia [22] and DynaCo [23] change system configu-
ration parameters dynamically to improve performance. Harmonia
and DynaCo are software-based approaches and cannot handle fast
power issues.

Several approaches exist targeting the heterogeneous design
space with a focus on limiting the power. Co-Cap [21] limits the
frequency of either the CPU or GPU to guide the power to the
dominant component for that workload. Tsuzuku and Endo [29]
maintain a power cap through software-based control. They com-
bine preprofiled frequency models with realtime behavior analysis
to reduce energy consumption without impacting performance.
Bhattacharjee and Martonosi [6] measure thread criticality to use
task stealing and DVFS control to reduce energy consumption with-
out reducing performance.

Tangram [24] uses a decentralized controller architecture to
manage heterogeneous systems to improve execution time but
manages the system on the millisecond scale, too slow for certain
power violations.

HCAPP builds upon the more specifically focused approaches
CAPP [27] for CPUs and GPU-CAPP [26] for GPUs. These ap-
proaches provide a similar form of decentralized control with a
local controllers at each component. CAPP focused on the capabil-
ities of this approach for only CPUs and GPU-CAPP focused on
only GPUs. Using the specific behavior and available information
for GPUs, the local controller design was explored. These works
demonstrate that HCAPP can function for each component and
provide local controller designs. However, HCAPP extends these
works by integrating CPUs, GPUs and accelerators into a single
controlled system.

3 HCAPP FRAMEWORK DETAILS
Heterogeneous Constant Average Power Processing (HCAPP) uses
a multi-level modular decentralized power control architecture
to enforce an overall power limit while maximizing performance
for the various subcomponents. HCAPP is an extension of CAPP
and GPU-CAPP to go beyond just the CPU or GPU to the entire
chip [26, 27]. HCAPP uses a 3 level architecture with each level
optimizing the power usage for a particular goal. Figure 3 shows
a conceptual implementation of HCAPP for an example system.
The top level global controller maintains the overall power limit
and tries to use up the excess available power. The second level
domain controller normalizes the voltage to the subcomponent’s
allowable voltage range and provides a software interface to enable
software to inform the hardware power control. The third level
(if applicable based on the subcomponent) uses local metrics to
perform slight voltage modifications to increase or decrease power
usage for optimal efficient performance of that component. The
combination of these behaviors enables a dynamic power manage-
ment scheme that seeks to efficiently use all of the available power
without extra limitations on scalability of the system. Since each
controller has a simplified task, the design of these controllers can



ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Straube et al.

be far simpler than trying to design a monolithic controller for all
sub-components in a heterogeneous system.
3.1 Global Controller
The global controller modifies the global voltage to enforce the
specified power limit over a preset amount of time. This controller
uses sensing circuitry built into the voltage regulator (VR) to mea-
sure the current and voltage, as seen in commercially available
VRs [25]. From these values, the global controller determines the
current total chip power. The global controller converts the total
chip power to a new voltage output for the VR through two steps.
First, the controller calculates the voltage error with Equation 1.
The voltage error uses a cubic root of the power error due to the
approximate cubic relationship between power and voltage.

VErr =
3
√
PSPEC − PNOW (1)

VNEXT = VOf f set +KP ∗VErr +KI ∗

∫
VErrdt +KD ∗

dVErr
dt

(2)

Next, the controller uses PID control shown in equation to con-
vert the voltage error to the new global voltage. The constants
(VFeedForward ,KP ,KI ,KD ) in the PID equation must be tuned to
the system to properly maintain the power limit. PID controllers
are an implementation of a closed loop control methodology that is
widely used to control a variety of systems [3]. We use a common
variant of the PID controller which adds an open loop component,
the feed forward value. The feed forward value can provide addi-
tional responsiveness and stability to a PID implementation. The
speed of the control logic impacts the tuning values of the PID
function and the capabilities of the controller. The global controller
operates at a control cycle time that is long enough to allow the new
voltage to propagate to each subcomponent and the new current
draw to propagate back to the VR sensing hardware.
PID Tuning
The PID controller of the global voltage controller requires tuning
to set the various parameters. The parameters required are the
offset voltage (VOf f set ) and the PID constants (KP ,KI ,KD ). The
offset voltage is set to approximately the average voltage expected
throughout execution.

To tune the controller constants, we run a single workload com-
bination over a range of proportional gain values until the behavior
became unstable. Then, we increase the integral gain value until
the steady state output reached the desired behavior. The derivative
portion of the PID design is generally unneeded. This results in
a PI controller. The tuning for a single benchmark must be veri-
fied against the entire experiment workload set to ensure proper
behaviors.
3.2 Domain Controller
The second level controller or domain controller normalizes the
global voltage to a usable range for the specific subcomponent
type using a VR. The specific VR is normally a smaller version of
the global VR. In 2.5D integration, a VR is needed for each chiplet
due to the differing voltage requirements across the chiplets. For
example, a processor may need a voltage in the range of 1V while
a specific accelerator needs the input voltage to be between 0.6V
to 0.8V. These different domains require the global voltage to be

normalized to the local requirements. Certain subcomponents, such
as memory, need a constant voltage. In 2.5D integration the various
chiplets can be produced on different technology nodes which
require different voltage ranges. The domain controller chooses the
appropriate scaled value or fixed value based on the needs of the
chiplet it controls.

The domain controller also provides an interface for the oper-
ating system to interact with the power management hardware
based on expected program behavior. The software interface could
implement a number of different behaviors such as changing the
ratio of the global voltage being used for the domain voltage of
each component. The domain controller uses the priority value as
a scaling factor for the domain voltage calculation. When a domain
de-prioritized by 10%, the domain voltage controller multiplies the
global voltage by 0.9x before doing any domain-specific scaling.
This provides a sample implementation for how the domain con-
troller can take software inputs to guide power control decisions.
This interface would use a register for each domain controller that
contains the relative priority value for that domain. The incoming
global voltage would be scaled by the priority value for that domain.
The operating system can change the priority value dynamically
by modifying the register value. Other implementations for the
domain controller software interface are possible.
3.3 Local Controller
The local controller leverages local metrics to change voltage and
power behavior locally to improve efficiency but cannot apply to
components lacking the ability to change voltage. For example,
these local controllers exist for each streaming multiprocessor in
a graphics processing unit and for each core in a compute multi-
processor. The local controller uses local metrics such as IPC to
change the voltage (and potentially frequency) used by the logic
block via a local VR. This enables idle or underutilized components
to reduce their power usage and busy components to increase their
power usage. The goal at this level is to use power efficiently. This
concept of the local controller is proposed in both CAPP [27] for
CPUs and GPU-CAPP [26] for GPUs.

The local controller alsomonitors the component for any thermal
effects using local thermal sensors. The thermal effects do not
affect the results of this paper because we assume that the system
is operating below the thermal limit at all times through careful
selection of the power limit. If thermal effects did exist throughout
the workload, the local controller would reduce the local voltage at
the affected component to prevent failure. Additionally, software-
based control can be used due to the slower timescale of thermal
effects.
3.3.1 CPU Local Controller. The specific CPU local controller de-
sign was implemented in CAPP [27]. We reuse the local controller
design from CAPP. This local controller changes the ratio of the
domain voltage to use locally based on static thresholds. The behav-
ior is controller by the instructions per clock (IPC) of each core. In
the CPU-only evaluation, this local controller design outperforms
the alternative designs including a CAPP design lacking a local
controller [27]. Using a local controller, allows the CPU cores to dy-
namically balance relative to the domain voltage. IPC is a relevant
metric for the work efficiency of processor cores.
3.3.2 GPU Local Controller. The GPU local controller design deter-
mines how the GPU compute units (CUs) measure their efficiency



HCAPP: Scalable Power Control for Heterogeneous 2.5D Integrated Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Figure 3: HCAPP: High Level Architecture

and control the local voltage. GPU-CAPP performed an examination
of several possible GPU local controller designs [26]. Ultimately,
the most effective GPU local controllers were the dynamic warp
design and the dynamic IPC design. We use the dynamic IPC design
in this paper. The dynamic IPC local controller changes the local
voltage ratio of the domain voltage to use based on the IPC metric.

The specific thresholds used to determine the metric behavior
change based on the behavior of the domain voltage. The local con-
troller increases the thresholds when the domain voltage is below
a preset target domain voltage value. Similarly, when the domain
voltage is above the target value, the local controller decreases the
thresholds. This behavior seeks to stabilize the domain voltage at
a middle value by forcing the various CUs/cores to separate into
a balanced distribution of higher and lower local ratios. This pre-
vents the issue of static thresholds becoming inaccurate for many
workloads because they will update to an accurate value. For exam-
ple, as the thresholds increase, more of the CUs/cores will fail to
reach the thresholds and begin to reduce their local voltage. As the
local voltage ratios decrease on some of the CUs/cores, the power
consumption of the entire domain decreases. This power reduction
continues to the global controller calculates a higher global volt-
age due to the lower current power draw. As a result, the domain
voltage gets closer to the target domain voltage and the CUs/cores
are more evenly distributed in local voltage ratios. The CUs/cores
that were able to meet the higher threshold requirements are more
efficient than the ones that did not.

3.3.3 Accelerator Local Controller. The accelerator local controller
design varies signficantly based on the accelerator implementation.
For this design, we use a simple pass-through local controller which
provides overvoltage and undervoltage protection but does not
apply a local voltage ratio. Future implementations could add a
more intelligent local controller based on the specific metrics and
behavior of the accelerator.

The local controller design can change between accelerators or
other components based on their specific needs. This flexibility
opens up possible adversarial local controller designs that always
use all of the available voltage possible, ignoring any local metric
information. In this case, HCAPP would set the global voltage to an
acceptable value on each control cycle to maintain the power limit.
The performance of the other components would be impacted but
only based on the actual consumed power. When the uncontrolled
component is using less power, the other components would still
benefit due to an increase in the global voltage.

3.4 Control Cycle Time of HCAPP
The control cycle time of HCAPP was determined through detailed
modeling of the varied components in the system. The key compo-
nents are outlined in Table 1. The delays of the components dictate
the maximum possible roundtrip time of the power behavior in a
system. The Raven voltage regulator design [16] specified the volt-
age regulator delays. This voltage regulator provides fast voltage
changes which aids this design. The global voltage regulator and
domain voltage regulator both add the delay of the Raven voltage
regulator to the roundtrip latency. The power supply network be-
havior was based on Cadence Spectre simulations using the model
by Gupta et. al [11] for on-chip power supply networks. We in-
creased the delay of this model by 5x to account for the likely new
delays in a 2.5D integrated system. These delays will vary with each
implementation but provide a good approximate value. The sensing
circuitry delay and controller delays were measured in Cadence
Spectre simulations. With these delays accounted for, HCAPP uses
a conservative control cycle time of 1µs .

3.5 Assumptions and Implementation Issues
The design of HCAPP makes several assumptions about the design
of the underlying system. The global controller can change the volt-
age at any time without any communication with the underlying



ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Straube et al.

Table 1: Breakdown of delays for HCAPP transitions. These values were obtained from literature, technical specifications and
Cadence Spectre simulations

Component Simulated Transition time (ns) Scaled Transition time (ns)
Voltage Regulator (global and domain) 36-226 (x2) 72-452

Sensing Circuitry 50-60 50-60
Controller 10-30 10-30

Power Supply Network 3-15 (x5) 15-75
Total 99-331 147-617

HCAPP Control Period 1,000

system nodes. This behavior can lead to timing violations if this
behavior is not properly accounted for. First, a voltage guardband
can be used to ensure that each node has sufficient time to change
the local ratio to reach an acceptable voltage setting. Second, the
use of adaptive clocking at each node can ensure that as the voltage
drops, the frequency also drops to a functional value. This tech-
nique is described by Keller [15] and applies only to clocked nodes.
Other nodes such as analog accelerators or asynchronous accel-
erators do not need this additional control as the mechanisms to
handle the global controller behavior are built in. Adaptive clocking
also handles any temporary voltage-related issues such as voltage
glitches in the power distribution system. For all clocked nodes in
this implementation, we assume that adaptive clocking is used but
guardbands are a viable alternative.

If guardbanding was used instead of adaptive clocking, the local
voltage would be slightly reduced to ensure stable operation of all
clocked components. The local controllers could detect the reduced
input voltage and reduce the local frequency to prevent any under-
voltage scenarios. Since these actions are all local, they can occur
very quickly, minimizing the required guardband.

In this paper, we assume that the power constraint is lower
than the TDP so temperature effects are not modeled. Temperature-
based control exists within the local controllers to handle thermal
issues and software-based control could also aid with thermal effect
mitigation through the HCAPP software interface.

4 EXPERIMENTAL SETUP
To evaluate the speedup and power management capabilities of
HCAPP, we created a series of experiments. These experiments are
conducted on a design with a CPU, a GPU, and an SHA accelerator.
This system was operated at two power constraints: 100Watts pack-
age pin limit and 100 Watts off-package VR limit. These two power
limits test different possible power supply bottlenecks in the system
by changing the time window for evaluating the maximum power.
These time windows are based on the delay of a current change to
arrive at either the package pins or the off-package voltage regu-
lators. By testing at both of these points, we can also examine the
sensitivity of HCAPP to the power limit definition. As a baseline,
we simulated a fixed global voltage system with no local controllers.
This provides the closest equivalent to a fixed frequency system in
a heterogeneous design. The fixed global voltage for this system
was 0.95V This voltage was selected because it achieved the highest
performance without violating the power target. Each component
of the system required different workloads and simulators. We de-
signed and use a central simulation controller to implement the

Table 2: Details of CPU and GPU Configuration

Component CPU GPU
Units 8 Cores 15 SMs

Cores per SM N/A 1
L1 Cache Size 32 kB 16 kB

Shared Memory Size N/A 48 kB
L2 Cache Size 256 kB 768 kB

Maximum Frequency 2 GHz 700 MHz
Minimum Frequency 800 MHz 100 MHz

global power control behavior and manage the separate component
simulators. All of the seperate component workloads were initial-
ized simultaneously. Since the workloads had various lengths in
their original implementation, we modified the short workloads to
loop them to reach the same approximate timescale as the work-
loads for the other components. In practice, this only effected the
GPU workloads.
4.1 Central Simulation Controller
The central simulation controller serves two purposes: modeling
the global controller and managing the overall simulation state
between the various connected simulators.
4.2 CPU Simulator
We used Sniper as the CPU simulator for the CPU portion of our
system [12]. Sniper is an x86 processor interval-based simulator
from Intel. For power modeling of the CPU, we used McPAT [18].

We used the Nehalem model provided within Sniper. The de-
tails for this model are shown in Table 2. The specific CPU local
controller was an IPC static controller.If the core IPC exceeds 60%
of the maximum possible IPC, the local voltage ratio is increased
by 0.05. If the IPC falls below 30% of the maximum possible IPC,
the local voltage ratio is decreased by 0.05. The domain voltage
controller was only used for the software interface capabilities as
the default global voltage scale matched the CPU voltage scale.

For our simulations, we used a specific subset of the PARSEC
benchmark suite that showed a variety of power behavior. These
benchmarks selected are blackscholes, fluidanimate, ferret and
swaptions. This subset captures a wide variety of power behav-
ior on the CPU.
4.3 GPU Simulator
For the GPU portion of the experiments, we used a combination of
GPGPUSim and GPUWattch. GPGPUSim is a cycle-level simulator
that uses split modeling for the functional and timing portions



HCAPP: Scalable Power Control for Heterogeneous 2.5D Integrated Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

of the GPU operation [5]. GPUWattch is a detailed energy model
that is integrated with GPGPUSim [17]. To ensure that our models
were as accurate as possible, we used the GTX480 GPU as the GPU
component in our system. More details on the GPU model specifics
are in Table 2.

The GTX480 is the most recent validated power model within
GPUWattch. Using a validated power model is critical for accurate
simulation results. The GPU model shows the effect of GPU-like
behavior on HCAPP. Other GPUs could be used instead of the
GTX480 but the limitations of the simulation environment require
the use of the GTX480 for maximum accuracy. Similarly, we use
GPGPU-Sim version 3.2.2 because it is the newest validated release
of GPGPU-Sim.

The local controller within the GPU model is a dynamic IPC-
based local controller as previously described. In this implementa-
tion, the local controller changes the thresholds by multiplying the
previous thresholds by ±5% at a time. There is an allowable dead-
zone of 5% between the target domain voltage and actual domain
voltage. The target domain voltage value is 1.05V based on initial
profiling.

The domain controller scales the global voltage by 75% to match
the approximate voltage range of the GPU relative to the global
voltage range.

The benchmarks for the GPU are a subset of the Rodinia bench-
mark suite [10]. The subset was selected based on power characteris-
tics to provide a range of power behaviors. The specific benchmarks
selected are backprop, bfs, myocyte and sradv2. These benchmarks
capture a range of power characteristics and provide interesting
combinations with other workloads.
4.4 SHA Accelerator Simulator
The SHA Accelerator was modeled in Python based on the power-
throughput-voltage relationships from the design by Suresh et
al [28]. The points from the relevant figures in the paper were put
into lookup tables and, based on the provided voltage, throughput
and power for a given time period were calculated. The local con-
troller for the SHA accelerator scales the voltage by 75% to match
the accelerator voltage range relative to the global voltage range.

The total work that the accelerator has to complete is modeled as
a fixed number. The work completed on each cycle is linearly pro-
portional to the maximum usable voltage setting for the accelerator.
Each control cycle, we subtract the work done during that cycle
(determined by the throughput over that time) from the total work.
When the total work is less than or equal to zero, the accelerator
can enter an idle state.

4.5 Why We Selected the GTX480 and PARSEC
Benchmark Suite

We selected the GTX480 GPU model and PARSEC benchmark suite
despite their relative age to ensure the accuracy of the simula-
tion results. The GTX480 GPU model in GPUWattch is the newest
validated power model. Using a newer GPU model would lead to
inaccurate results since HCAPP uses the power draw of the system
as an input. HCAPP will control the power despite the GPU design
so the GTX480 design shows how GPU-like behavior will impact
HCAPP’s effectiveness. Other GPUs could be used instead of the
GTX480 but the limitations of the simulation environment require

Table 3: Benchmark Combinations Used for Validation

Name CPU GPU SHA
Low-Low Blackscholes Myocyte Modeled
Low-Hi Blackscholes Backprop Modeled
Hi-Low Fluidanimate Myocyte Modeled
Hi-Hi Fluidanimate Backprop Modeled

Mid-Mid Swaptions Sradv2 Modeled
Const-Burst Swaptions BFS Modeled
Burst-Const Ferret Myocyte Modeled
Burst-Burst Ferret BFS Modeled

the use of the GTX480 for maximum accuracy. We would expect
similar results to the ones shown in Section 5 using newer GPUs.
We used the PARSEC benchmark suite for its functionality and ver-
ified correctness within the Sniper simulator. Using another newer
benchmark suite would reduce the number of usable benchmarks
and accuracy of the benchmark behavior within the simulator. The
PARSEC benchmark suite includes important program behaviors
the are exercised within the simulator. Other benchmarks may
include additional program behaviors but these behaviors do not
invalidate the behaviors exercised by the PARSEC suite.
4.6 Relevant Comparison Systems
To provide comparisons for HCAPP, we evaluate HCAPP running
at two slower control frequencies. These slower control frequencies
provide approximate models for RAPL and software-based con-
trollers. These two alternate versions: RAPL-like (100 microsecond
control period) and Software-like (10 millisecond control period).
We consider both of these control speeds to be aggressive for the
systems they represent. Through the comparison of these designs
with HCAPP (1 microsecond control period), we show the impor-
tance of fast adaptation time. This comparison answers the question
of why a fully hardware-based design is necessary, especially as
the number of components in a system increases.

5 PERFORMANCE ANALYSIS OF HCAPP
To evaluate the performance and power characteristics of HCAPP,
we created a heterogeneous test suite for our system using the
benchmark combinations shown in Table 3. The resulting test suite
provides interesting power behavior combinations for the various
sub-components. The names indicate the power behaviors. This
first four tests cover the standard power corner cases. The last
four tests exercise the system to demonstrate how bursty power
behavior affects the system. The speedup enabled by HCAPP for
any of these tests can be translated into extra performance without
changing the package pins allocations or power limits.
5.1 Package Pin Power Limit Results
To evaluate the capabilities of HCAPP under a power limit dictated
by package power pin allocation, we implemented a power limit
of 100 Watts over 20 microseconds. 20 microseconds is an estimate
of the amount of time for the power draw from the components
in the system to reach the package pins. Failing this specification
could result in additional allocated package pins to handle the burst
of power. Under this power limit, we tested the all three HCAPP
implementations relative to the fixed voltage design for maximum



ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Straube et al.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Fixed Voltage HCAPP RAPL-like HCAPP SW-like HCAPP

3RwHr�)DLOurH

Figure 4: Maximum power relative to 100 Watt, 20 µs power
limit. RAPL-like and SW-likeHCAPP exceed the 1.0 line and
violate the power limit.

0.0

0.2

0.4

0.6
0.8

1.0

1.2

1.4

1.6

Burst
-Burst

Burst
-Lo

w

Const-
Burst

Hi-H
i

Hi-L
ow

Lo
w-H

i

Lo
w-Lo

w

Mid-M
id

Av
e.

 S
pe

ed
up

 N
or

m
al

ize
d Fixed Voltage HCAPP

Figure 5: Speedup HCAPP relative to fixed voltage (0.95 V)
system. HCAPP speeds up execution time by an average of
21%.

power draw, execution speedup and provisioned power efficiency
(PPE).

Figure 4 shows the maximum power relative to the power limit
drawn by the various HCAPP implementations and the fixed voltage
system. This experiment determines whether an approach violates
the power limit or not. Ideally, an approach would exactly reach
1.0 for all tests but that may not be possible due to the differences
between the tests. For an approach to be viable, all of the maximum
powers across the entire test suite must be below the 1.0 mark.
Both the fixed voltage and HCAPP implementations stay below
the allowable limit. RAPL-like HCAPP and Software-like HCAPP
greatly exceed the 1.0 mark causing a power failure. Thus, these
slower approaches cannot be used under the power limit. We omit
these approaches from the speedup and PPE results because these
controller designs are determined to be invalid. In practice, these
approaches could be used with additional guardbanding or more
conservative schemes. To consider this case, we evaluate these ap-
proaches for performance and provisioned power efficiency under
the slow power limit shown in Section 5.2.

Figure 5 shows the speedup achieved by HCAPP relative to the
fixed voltage system system since these are the valid implementa-
tions based on the maximum power results. The available speedup
varies based on the frequency sensitivity of the test and the extra
available power throughout the execution of the test. The speedup

is calculated by geometrically averaging the speedup of the three
subcomponents: CPU, GPU and SHA. Equation 3 shows the exact
calculation used for the total speedup results where Scomponent
denotes the speedup of that component. Overall, HCAPP achieves
a 21% speedup over the fixed voltage (0.95 V) system. This speedup
is attained by using additional available power throughout each
test. By using HCAPP, the system achieves 21% speedup without
any additional package pin requirements by using the package pins
more efficiently throughout the tests.

STotal =
3
√
SCPU ∗ SGPU ∗ SAccel (3)

PPE =
AveraдePower

SystemProvisionedPower
(4)

To measure the package resource utilization efficiency of the
designs, we define Provisioned Power Efficiency (PPE) in Equation 4.
This metric provides insight into the average utilization of the
package pins throughout the test. Figure 6 shows the provisioned
power efficiency of HCAPP and the fixed voltage system relative
to the power limit. Ideally, the provisioned power efficiency would
always use up all of the available power and provide a result of
100%. However, this is very difficult due to the behavior of the
tests. Programs have phases of different power behaviors result in
less than ideal results (< 100%). Dynamic schemes must protect
against behavior changes to ensure that the maximum power limit
is not violated by including a guardband and similar conservative
features. HCAPP improves the PPE compared to the fixed voltage
system by 10.2%, raising it from 69.1% to 79.3%. This means that the
voltage regulators or package pins used for the power distribution
are 10%more utilized. This additional power utilization provides the
speedup shown previously. The PPE across the entire suite shows
very little variance due to the properties of HCAPP’s power control.
HCAPP has many control cycles within each run and targets a
single power value. This repeated control with many control cycles
ensures that the average power across the entire run is close to
the power target. The power target is not the power limit because
HCAPP will have maximum values above the power target and
those cannot exceed the power limit.

5.2 Off-Package Voltage Regulator Power Limit
Results

Not all designs will be limited by the package pin allocation. To
evaluate the range of possible power limits, we evaluated HCAPP
under a slower power limit based on an off-chip voltage regulator
power supply limitation. This power limit specifies that the ap-
proaches cannot exceed 100 Watts over 1 millisecond based on the
relative time specification for max off-chip voltage regulator power
draw. Failure to meet this specification would result in higher costs
due to larger voltage regulator implementations. Similarly to the
previous results, we analyze the various HCAPP approaches for the
maximum power draw, execution speedup and provisioned power
efficiency. The PID control constants remained the same between
the two power limits to show the flexibility of the design.

Figure 7 shows the maximum power relative to the power limit
for the three HCAPP implementations under the slow power limit.
The RAPL-likeHCAPP implementation narrowly exceeds the power



HCAPP: Scalable Power Control for Heterogeneous 2.5D Integrated Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Burst
-Burst

Burst
-Lo

w

Const-
Burst

Hi-H
i

Hi-L
ow

Lo
w-H

i

Lo
w-Lo

w

Mid-M
id

Pr
ov

isi
on

ed
 P

ow
er

 E
ff

ic
ie

nc
y Fixed Voltage HCAPP

Figure 6: Provisioned power efficiency of HCAPP and fixed
voltage system. HCAPP improves the PPE by an average of
10.2%.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Burst
-Burst

Burst
-Lo

w

Const-
Burst

Hi-H
i

Hi-L
ow

Lo
w-H

i

Lo
w-Lo

w

Mid-M
id

M
ax

im
um

 P
ow

er
/L

im
it 

Ra
tio HCAPP RAPL-like HCAPP SW-like HCAPP

Figure 7: Maximum power relative to 100 Watt, 1 ms power
limit. RAPL-like and SW-like exceed the 1.0 value again but
we ignore this to allow further analysis.

limit for the Const-Burst test. For the sake of analysis, we will ana-
lyze all of the HCAPP implementations in this section to see how
the cycle time affects speedup and provisioned power efficiency.
We do not reanalyze the fixed voltage configuration as the altered
power limit does not change the behavior of a static design. Since
the fixed voltage configuration was below the power limit at the
faster power limit, it is also under this power limit and used for
comparisons on speedup and PPE. The HCAPP is the only dynamic
design that stays under the power limit. For the sake of analysis,
the next experiments ignore the maximum power failures of RAPL-
like (100 microseconds) and Software-like (10 milliseconds) control.
These approaches are evaluated without any modifications to mea-
sure their performance and provisioned power efficiency. This is
an overly optimistic view of how these approaches would be imple-
mented to account for additional intelligence in the controllers.

Figure 8 shows the speedup of the HCAPP approaches across
the test suite. The speedup is normalized to the performance of
the fixed voltage (0.95 V) system. Overall, HCAPP provides the
most speedup. However, certain tests show increased speedup with
RAPL-like HCAPP. In particular, any test involving the ferret (Burst-
*) benchmark benefits from the RAPL-like HCAPP behavior. This
occurs because ferret’s power behavior is characterized by long
times of low activity with short bursts of high power activity mixed
in. HCAPP tries to adjust the power for these short bursts resulting

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Burst
-Burst

Burst
-Lo

w

Const-
Burst

Hi-H
i

Hi-L
ow

Lo
w-H

i

Lo
w-Lo

w

Mid-M
id

Av
e.

 S
pe

ed
up

 N
or

m
al

ize
d

HCAPP RAPL-like HCAPP SW-like HCAPP

Figure 8: Speedup of multiple HCAPP versions relative
to fixed voltage system under slow power limit. HCAPP
achieves an average speedup of 43% while RAPL-like
HCAPP achieves an average speedup of 36%.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Burst
-Burst

Burst
-Lo

w

Const-
Burst

Hi-H
i

Hi-L
ow

Lo
w-H

i

Lo
w-Lo

w

Mid-M
id

Pr
ov

isi
on

ed
 P

ow
er

 E
ff

ic
ie

nc
y

HCAPP RAPL-like HCAPP SW-like HCAPP

Figure 9: Provisioned power efficiency of multiple HCAPP
versions and fixed voltage system under slow power limit.
HCAPP averages a PPE of 93.9% while RAPL-like HCAPP
averages 79.7%.

in excess power throttling and thus slower execution. Future imple-
mentations of HCAPP could work with software control designs
to improve the speedup through the HCAPP software interface in
cases like this. RAPL-like HCAPP does not react within the short
bursts and instead reacts to larger time samples where the effect
of these bursts is mitigated. For many of the tests, Software-like
HCAPP does not show significant speedup because it cannot react
quickly enough to take advantage of the changes in power through-
out the program execution. Overall, HCAPP achieves an average
speedup of 43% while RAPL-like HCAPP (RAPL-like) reaches 36%
average speedup.

Figure 9 shows the provisioned power efficiency of the HCAPP
approaches. The provisioned power efficiency is normalized to the
power limit. 100% is the ideal value for this metric. HCAPP achieves
an average provisioned power efficiency of 93.9% under the 100
Watt over 1 ms power limit. RAPL-like HCAPP and SW-like HCAPP
achieve average provisioned power efficiencies of 79.7% and 69.2%
respectively. Software-like HCAPP reduces the PPE relative to the
fixed voltage system due to slower changes that lag behind the
actual program phases. HCAPP and RAPL-like HCAPP are better
than the fixed voltage system but the shorter control period of
the HCAPP allows for more opportunities to change the power



ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Straube et al.

0%

20%

40%

60%

80%

100%

120%

140%

CPU GPU SHA

Sp
ee

du
p 

Fr
om

 P
rio

rit
y

Burst-Burst Burst-Low Const-Burst Hi-Hi
Hi-Low Low-Hi Low-Low Mid-Mid

Figure 10: Additional speedup of HCAPP by prioritized com-
ponent compared to unprioritized. Prioritization provides
an average component speedup of 8.3%, 5.4% and 12% for the
CPU, GPU and SHA accelerator respectively.

consumption of the system. HCAPP and RAPL-like HCAPP both
show little variance in PPE across the test suite due to the length
of their control periods relative to the length of each test. Both
approaches are able to apply many control inputs throughout the
run. This behavior is also seen under the package pin power limit
with HCAPP in Section 5.1.

Overall, HCAPP provides the best performance and package
resource utilization but RAPL-like HCAPP also provides significant
advantages over static designs. A faster dynamic power controller
provides better tracking of the power behavior at all time scales
as shown by the maximum power results under the package pin
power limit. The benefits of a fast reaction time also manifest in
the speedup and PPE results at the off-package VR power limit. A
fully hardware-based decentralized controller design uses the extra
speed to enable potential savings in the system at the on-chip VR,
package pin and off-chip VR levels.

HCAPP does not require any PID re-tuning efforts with the
changing power limit definitions. This indicates that the power
limit could be changed dynamically during a run without needing
costly PID analysis. Improved PID constants for each power limit
setting may help improve the results even further but are unneeded
to achieve satisfactory power and performance behavior. HCAPP
provides speedup over a static power design and provides speedup
and PPE improvements over systems operating at slower timescales
such as centralized controller-based control designs or software-
based control designs. It is important to note that software-based
approaches can be used in conjunction with HCAPP to provide
further PPE and speedup benefits.

5.3 Software Interface Impact Results
The domain controller allows for interactions with software power
control logic. Software-based control can add global and program
infomation to the hardware power control behavior to improve
relevant speedup and desired power characteristics. As a proof of
concept, we implemented a static priority software controller that
prioritized a single component in the system. We ran the heteroge-
neous test suite three times, once with each component prioritized
using the 100 Watts over 20 microsecond power limit.

Figure 10 shows the prioritized component speedup across the
test suite compared to an unprioritized run. Each bar shows the

speedup of a single, unqiue run with that component being priori-
tized. Across the entire suite, the CPU prioritization accelerates the
CPU execution by 8.3%. For the GPU, the average speedup from soft-
ware priority is 5.4%. For the SHA accelerator, the average speedup
is 12%. The maximum power and PPE for these implementations
are similar to the previous results for HCAPP. The maximum power
and PPE do not significantly change because those behaviors are
primarily handled by the global controller which did not change.
The new HCAPP software priority-based speedups are promising
as they confirm that the software interface functions properly. With
better intelligence in the software control, further speedups would
be possible. This proves that HCAPP supports a usable mechanism
to interface with other software control schemes such as CoCap [21]
or DynaCo [23].

Some notable outliers in this data are the three GPU runs that
ran a Low GPU workload. The Low workload is myocyte which
uses very low power. The CPU and SHA accelerators drive the
power management in these scenarios. The CPU has its high power
phases spread out since it spends less time waiting for memory.
This leaves less power for the GPUwork despite being prioritized. A
more intelligent scheme could manage the domains independently
throughout the workload to accelerate these scenarios as needed.

The other outlier is the Burst-Low CPU result. The Burst CPU
workload is ferret which caused the unexpected behavior in the
previous section with the RAPL-like HCAPP implementation. This
is a bursty workload that can have odd behavior relative to the
power provided throughout its operation. This shows that a more
aware software algorithm could provide additional logic to better
accelerate this kind of workload.

Overall, the validation of the software interface proves that
HCAPP can be used in conjunction with software approaches. The
presented software approach does not include the needed intelli-
gence to benefit all of the test cases. Other researched software
control designs could be integrated to provide additional speedup
and power utilization.

6 CONCLUSIONS AND FUTUREWORK
This paper presents HCAPP to implement power capping behav-
ior while maximizing provisioned power efficiency. To accomplish
this, HCAPP uses a decentralized hardware-based approach. We
design and validate a software interface into HCAPP to ensure
that software-based control designs can work with HCAPP. Fu-
ture explorations into improving HCAPP could focus on adding
intelligence to the software controller used alongside HCAPP. In
this paper, the software interface was validated with a a static
priority-based software controller. Software-based control can al-
low proactive or predictive control beyond the reactive control that
HCAPP implements. The software controllers provide a way to use
centralized information to proactively adjust HCAPP parameters
to prepare the system for certain power or test behaviors before it
happens. This allows better management of the power and higher
performance through better power allocation between components
in advance. For example, the CPU begins to send work to the GPU
and the software detects this. Then, the software controller reduces
the HCAPP CPU domain voltage ratio (priority) and increases the
GPU domain voltage ratio. By performing behaviors such as this



HCAPP: Scalable Power Control for Heterogeneous 2.5D Integrated Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

throughout varying workloads, the combined HCAPP and software
control scheme would outperform HCAPP alone.

REFERENCES
[1] [n.d.]. AMD Unveils ’Chiplet’ Design Approach: 7nm Zen 2 Cores Meet 14 nm

I/O Die. https://www.anandtech.com/show/13560/amd-unveils-chiplet-design-
approach-7nm-zen-2-cores-meets-14-nm-io-die. Accessed: 2019-01-17.

[2] [n.d.]. Intel’s Architecture Day 2018: The Future of Core, Intel GPUs, 10nm, and
Hybrid x86. https://www.anandtech.com/show/13699/intel-architecture-day-
2018-core-future-hybrid-x86/6. Accessed: 2019-01-17.

[3] [n.d.]. PID controller - Wikipedia. https://en.wikipedia.org/wiki/PID_controller.
Accessed: 2019-01-25.

[4] K. Atasu, L. Pozzi, and P. Ienne. 2003. Automatic application-specific instruction-
set extensions under microarchitectural constraints. International Journal of
Parallel Programming 31, 6 (2003), 411–428.

[5] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. 2009. Analyzing CUDA
workloads using a detailed GPU simulator. In Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on. IEEE, 163–174.

[6] A. Bhattacharjee and M. Martonosi. 2009. Thread Criticality Predictors for
Dynamic Performance, Power, and Resource Management in Chip Multipro-
cessors. SIGARCH Comput. Archit. News 37, 3 (June 2009), 290–301. https:
//doi.org/10.1145/1555815.1555792

[7] Bryan Black. [n.d.]. Die Stacking Is Happening! https://www.microarch.org/
micro46/files/keynote1.pdf. Accessed: 2019-02-11.

[8] M. Bohr. 2007. A 30 year retrospective on Dennard’s MOSFET scaling paper.
IEEE Solid-State Circuits Society Newsletter 12, 1 (2007), 11–13.

[9] J. Charles, P. Jassi, N. Ananth, A. Sadat, and A. Fedorova. 2009. Evaluation of the
Intel® Core™ i7 Turbo Boost feature. In Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on. IEEE, 188–197.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and K. Skadron. 2009.
Rodinia: A benchmark suite for heterogeneous computing. In Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on. Ieee, 44–54.

[11] M. Gupta, J. Oatley, R. Joseph, G. Wei, and D. Brooks. 2007. Understanding voltage
variations in chip multiprocessors using a distributed power-delivery network.
In Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE’07.
IEEE, 1–6.

[12] W. Heirman, T. Carlson, and L. Eeckhout. 2012. Sniper: Scalable and accurate
parallel multi-core simulation. In 8th International Summer School on Advanced
Computer Architecture and Compilation for High-Performance and Embedded
Systems (ACACES-2012). High-Performance and Embedded Architecture and
Compilation Network of Excellence (HiPEAC), 91–94.

[13] C. Hsu, Y. Zhang, M. Laurenzano, D. Meisner, T. Wenisch, J. Mars, L. Tang, and R.
Dreslinski. 2015. Adrenaline: Pinpointing and reining in tail queries with quick
voltage boosting. In High Performance Computer Architecture (HPCA), 2015 IEEE
21st International Symposium on. IEEE, 271–282.

[14] H. Kasture, D. Bartolini, N. Beckmann, and D. Sanchez. 2015. Rubik: Fast analyt-
ical power management for latency-critical systems. In Proceedings of the 48th
International Symposium on Microarchitecture. ACM, 598–610.

[15] Ben Keller. 2015. Opportunities for Fine-Grained Adaptive Voltage Scaling to
Improve System-Level Energy Efficiency. Master’s thesis. EECS Department, Uni-
versity of California, Berkeley.

[16] Y. Lee, B. Zimmer, A. Waterman, A. Puggelli, J. Kwak, R. Jevtic, B. Keller, S. Bailey,
M. Blagojevic, P. Chiu, H. Cook, R. Avizienis, B. Richards, E. Alon, B. Nikolic,
and K. Asanovic. [n.d.]. Raven: A 28nm RISC-V Vector Processor with Integrated
Switched-Capacitor DC-DC Converters and Adaptive Clocking.

[17] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. Kim, T. Aamodt, and V. Reddi.
2013. GPUWattch: enabling energy optimizations in GPGPUs. In ACM SIGARCH
Computer Architecture News, Vol. 41. ACM, 487–498.

[18] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. 2009. McPAT:
an integrated power, area, and timing modeling framework for multicore and
manycore architectures. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 469–480.

[19] G. Loh. 2008. 3D-stackedmemory architectures for multi-core processors. InACM
SIGARCH computer architecture news, Vol. 36. IEEE Computer Society, 453–464.

[20] S. Pal, D. Petrisko, A. Bajwa, P. Gupta, S. Iyer, and R. Kumar. 2018. A Case for Pack-
ageless Processors. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 466–479.

[21] J. Park, C. Hsieh, N. Dutt, and S. Lim. 2016. Co-Cap: energy-efficient cooperative
CPU-GPU frequency capping for mobile games. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing. ACM, 1717–1723.

[22] I. Paul, W. Huang, M. Arora, and S. Yalamanchili. 2015. Harmonia: Balancing
Compute and Memory Power in High-performance GPUs. In Proceedings of
the 42Nd Annual International Symposium on Computer Architecture (Portland,
Oregon) (ISCA ’15). ACM, New York, NY, USA, 54–65. https://doi.org/10.1145/
2749469.2750404

[23] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili. 2013. Coordinated Energy
Management in Heterogeneous Processors. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’13). ACM, New York, NY, USA, Article 59, 12 pages.
https://doi.org/10.1145/2503210.2503227

[24] R. Pothukuchi, J. Greathouse, K. Rao, C. Erb, L. Piga, P. Voulgaris, and T. 2019.
Tangram: Integrated Control of Heterogeneous Computers. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture (Columbus,
OH, USA) (MICRO ’52). Association for Computing Machinery, New York, NY,
USA, 384–398. https://doi.org/10.1145/3352460.3358285

[25] Richtek Technology Corporation. 2015. Dual Channel PWM Controller with
Integrated Driver for IMVP8 CPU Core Power Supply. http://www.richtek.com/
assets/product_file/RT3606BC/DS3606BC-00.pdf Accessed: 2016-09-30.

[26] K. Straube, J. Lowe-Power, C. Nitta, M. Farrens, and V. Akella. 2018. Improving
Provisioned Power Efficiency in HPC Systems with GPU-CAPP. In 2018 IEEE
25th International Conference on High Performance Computing (HiPC). 112–122.
https://doi.org/10.1109/HiPC.2018.00021

[27] K. Straube, C. Nitta, R. Amirtharajah, M. Farrens, and V. Akella. 2017. Improving
Execution Time of Parallel Programs on Large Scale Chip Multiprocessors with
Constant Average Power Processing. In 2017 IEEE International Conference on
Computer Design (ICCD). IEEE, 649–652.

[28] V. Suresh, S. Satpathy, S. Mathew, M. Anders, H. Kaul, A. Agarwal, S. Hsu, and R.
Krishnamurthy. 2018. A 230mV-950mV 2.8 Tbps/W Unified SHA256/SM3 Secure
Hashing Hardware Accelerator in 14nm Tri-Gate CMOS. In ESSCIRC 2018-IEEE
44th European Solid State Circuits Conference (ESSCIRC). IEEE, 98–101.

[29] K. Tsuzuku and T. Endo. 2015. Power capping of CPU-GPU heterogeneous
systems using power and performance models. In Smart Cities and Green ICT
Systems (SMARTGREENS), 2015 International Conference on. IEEE, 1–8.

https://www.anandtech.com/show/13560/amd-unveils-chiplet-design-approach-7nm-zen-2-cores-meets-14-nm-io-die
https://www.anandtech.com/show/13560/amd-unveils-chiplet-design-approach-7nm-zen-2-cores-meets-14-nm-io-die
https://www.anandtech.com/show/13699/intel-architecture-day-2018-core-future-hybrid-x86/6
https://www.anandtech.com/show/13699/intel-architecture-day-2018-core-future-hybrid-x86/6
https://en.wikipedia.org/wiki/PID_controller
https://doi.org/10.1145/1555815.1555792
https://doi.org/10.1145/1555815.1555792
https://www.microarch.org/micro46/files/keynote1.pdf
https://www.microarch.org/micro46/files/keynote1.pdf
https://doi.org/10.1145/2749469.2750404
https://doi.org/10.1145/2749469.2750404
https://doi.org/10.1145/2503210.2503227
https://doi.org/10.1145/3352460.3358285
http://www.richtek.com/assets/product_file/RT3606BC/DS3606BC-00.pdf
http://www.richtek.com/assets/product_file/RT3606BC/DS3606BC-00.pdf
https://doi.org/10.1109/HiPC.2018.00021

	Abstract
	1 Introduction
	2 Related Work
	3 HCAPP Framework Details
	3.1 Global Controller
	3.2 Domain Controller
	3.3 Local Controller
	3.4 Control Cycle Time of HCAPP
	3.5 Assumptions and Implementation Issues

	4 Experimental Setup
	4.1 Central Simulation Controller
	4.2 CPU Simulator
	4.3 GPU Simulator
	4.4 SHA Accelerator Simulator
	4.5 Why We Selected the GTX480 and PARSEC Benchmark Suite
	4.6 Relevant Comparison Systems

	5 Performance Analysis of HCAPP
	5.1 Package Pin Power Limit Results
	5.2 Off-Package Voltage Regulator Power Limit Results
	5.3 Software Interface Impact Results

	6 Conclusions and Future Work
	References



