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Mobile app developers often rely on cameras to implement rich features. However, giving apps unfettered access to the 
mobile camera poses a privacy threat when camera frames capture sensitive information that is not needed for the app’s 
functionality. To mitigate this threat, we present Aragorn, a novel privacy-enhancing mobile camera system that provides fine 
grained control over what information can be present in camera frames before apps can access them. Aragorn automatically 
sanitizes camera frames by detecting regions that are essential to an app’s functionality and blocking out everything else to 
protect privacy while retaining app utility. Aragorn can cater to a wide range of camera apps and incorporates knowledge 
distillation and crowdsourcing to extend robust support to previously unsupported apps. In our evaluations, we see that, with 
no degradation in utility, Aragorn detects credit cards with 89% accuracy and faces with 100% accuracy in context of credit 
card scanning and face recognition respectively. We show that Aragorn’s implementation in the Android camera subsystem 
only suffers an average drop of 0.01 frames per second in frame rate. Our evaluations show that the overhead incurred by 
Aragorn to system performance is reasonable.

CCS Concepts: • Security and privacy → Privacy protections; Mobile platform security; Usability in security and 
privacy; • Computing methodologies → Computer vision.
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1 INTRODUCTION
Billions of smartphone users use third-party camera apps to capture photos/videos [13, 26, 29, 64], experience 
AR/VR capabilities [50, 66], scan documents [3, 17], or employ assistive technologies [4, 16]. Cameras also enable 
app developers to design robust security challenges [14, 15, 21, 22, 31, 72]. For example, mobile cameras can be 
used to scan QR codes for two-factor authentication [1, 78], privately share contacts [49], or verify possession of 
credit cards [21, 22].
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The rich information captured by mobile cameras exposes potentially sensitive information to camera apps.
Currently, users only have coarse grained control to limit which apps can access camera frames, but not fine grained
control over what apps can access within these frames. It is not uncommon for camera apps to inadvertently
capture sensitive objects from user environments [48, 58]. Even in the absence of explicitly sensitive objects, apps
have used background information captured by cameras to profile users [65]. A camera app can even use this
information to (re)identify users [71] or collude with other camera apps for cross-app tracking [57]. While users
can attempt to remove potentially identifying or sensitive objects from their environment, it is challenging –
even for careful users – to ensure that their background cannot be exploited for tracking or identification. Past
surveys have also revealed a distrust among users towards cameras in general [32, 51].

Prior research to protect privacy from the information contained in images either use (a) object block lists to
conceal parts of images that are potentially sensitive or (b) object allow lists to reveal relevant parts of images and
conceal everything else [23]. Solutions based on block lists are strongly tied to certain sensitive objects within
images (e.g. faces [2, 33, 63].) Thus, extending their approach to other objects is difficult. While recent solutions
based on allow lists are not confined to certain objects, they pose a manual and cognitive burden on users [39, 56].
For example, WaveOff [56] requires users to provide precisely marked references of objects to be preserved in
camera frames. Thus, such systems only serve careful users who can bear this cognitive burden. To the best of
our knowledge, prior research lacks an automated solution that operates with minimal user effort while also
remaining extensible to cater to a diverse set of mobile camera apps.

In this paper, we present Aragorn—an automated and extensible privacy-enhancing system for mobile cameras
that protects privacy from camera apps while preserving utility. To this end, Aragorn follows an allow list based
appraoch, using an ML based sanitizer to automatically remove everything but objects that are relevant to an
app’s utility from camera frames. We integrate the sanitizer within the mobile operating system for seamless
backward compatibility with existing apps. Aragorn employs a novel training strategy to retrain the sanitizer
whenever apps seek support for previously unrecognized objects. For example, there are some apps that scan
COVID vaccination cards – an object that did not exist prior to 2021. In such cases, Aragorn retrains the sanitizer
by automatically inferring the training labels, without manual intervention, on images from different sources
(including the users themselves while they interact with camera apps). Aragorn incorporates crowdsourced
validation to ensure robustness of the sanitizer against data poisoning.

Aragorn has 89% accuracy in detecting credit cards and 100% accuracy in detecting faces in context of credit
card scanning and face recognition respectively without degrading utility. Aragorn’s crowdsourced approach to
combat data poisoning detects 100% of all poisoned inputs while retaining over 94% of clean inputs. Our prototype
implementation of Aragorn in Android’s camera subsystem produces frames at a rate over 29 frames per second
(fps), with only 0.06% increase in battery consumption. Our source code is available at this link.

Our key contributions include:
• An automated approach to sanitize camera frames for relevant objects while preserving app utility;
• An extensible approach to sanitize camera frames for previously unrecognized objects in a robust manner;
and

• A backward compatible and real time implementation on Android.

2 MOTIVATING EXAMPLE
We use a contrived example of a credit card scanner to illustrate the interaction between the different entities
involved in mobile camera apps.
Alice makes a purchase on an app, MalApp on her phone. MalApp asks her to scan her credit card using her

phone’s live camera feed to prove possession of her payment method [21, 22]. Sitting in her living room, she
positions her card in front of the camera as shown in Figure 1. On receiving frames from her camera feed, MalApp
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Fig. 1. The figure on the left shows the user’s perspective while using a camera app to scan her credit card. We have
highlighted the credit card in this figure since the user expects the app to only process the card from the camera frame. The
figure in the middle shows other inferences that the app can potentially make about the user’s environment from regions of
the camera frame that do not contain the card. The figure on the right depicts the frame shown to the app by Aragorn to
ensure that the app cannot make inferences about the user’s environment while preserving its utility.

processes them to extract the card information and verify her payment method. We draw attention to the fact
that while Alice expects MalApp to only extract credit card information from her camera frames, MalApp can
also make other inferences from them. In the example shown in Figure 1, MalApp has access to information
present on her driver’s license, it can infer her political preference, her interest in gaming, her interest in soccer
etc. MalApp could also collude with other apps to extract an identifier for Alice from this visual information
(such as the position of her lamp, the soccer poster on her wall, her decorative plants, the color of her walls
and other home decor) to identify her [71] for cross-app tracking. Specifically, MalApp can exploit the visual
information captured by her camera frames as a fingerprinting vector. It could adopt such fingerprints circumvent
mobile operating system restrictions that limit an app’s access to device identifiers [12, 28]. This is analogous
to websites relying on fingerprinting-based stateless tracking in response to browsers phasing out third-party
cookies [36, 73].
Aragorn ensures that the camera frames sent to MalApp only contain credit cards so that Alice can use the

app while ensuring that it cannot make any inferences about her environment as shown in the image on the
right of Figure 1. More generally, Aragorn provides fine grained control over what can be present in camera
frames before allowing apps to access them. To cater to diverse camera apps, Aragorn has to have the ability to
recognize any object that a user may want to reveal to an app, including those that could emerge in the future.
While Aragorn could use pretrained models or public datasets for common objects (such as pets, computers, faces
etc), it is difficult to even procure training images of more nuanced objects like credit cards. Aragorn adopts a
novel training strategy based on knowledge distillation and crowdsourcing to detect such objects.
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Table 1. Compared to prior research on protecting sensitive user information captured by camera frames, Aragorn caters to
a wide range of apps without incurring significant user effort.

I-Pic Cardea Bystander Recognizer PrivateEye WaveOff Aragorn
[2] [63] privacy [33] abstraction [38] [56] [56] [This paper]

Compatible with
diverse camera apps x x x x ✓ ✓ ✓
Requires minimal
effort to set up x x ✓ ✓ x x ✓
Requires minimal
effort to use camera ✓ ✓ ✓ ✓ x ✓ ✓
Incurs minimal
camera latency x x ?1 ✓ x x ✓
Compatible with
live camera feed x x x ✓ ✓ ✓ ✓

The authors of the paper [33] did not report latency.

3 BACKGROUND
We characterize the 4 different entities involved in the mobile camera app ecosystem based on the example: a user
(Alice), an app (MalApp), an object of interest associated with the app (credit card) and the user’s environment
(Alice’s living room where she scans her card). We describe each of these entities in detail:

User. The user runs an app on their mobile device that requires access to the camera. The user trusts the app
to provide some utility (verify the payment method and complete the transaction in the example) by allowing it
to access live camera frames but wants to ensure that the app does not capture sensitive information about their
environment.
App. The app runs on the user’s device and promises some utility to the user by accessing frames from

the user’s camera feed. Based on the expected utility, apps are typically associated with a particular object of
interest (users may also choose to associate an object of interest with an app that is not tied to any object, like
a photo-sharing app). Malicious apps may attempt to leak information about the user’s environment from the
background captured in camera frames.

Environment. The user’s environment contains information about the physical location where the user holds
the camera. In addition to the object of interest, the environment could contain sensitive information about the
user and/or other people who are in the background. Defining which objects in the environment are privacy
sensitive is subjective, with the entire environment itself potentially being sensitive.
Object of interest. Objects of interest are objects present in the user’s environment that are tied to the

expected utility of the app. These are also the only objects that the user has consented to allow the app to access.

3.1 Related Work
Hasan et al. [33] proposed a block list based approach to protect the privacy of bystanders in images by
automatically detecting and obscuring their faces. Their approach being strongly tied to by-standers means that
they cannot detect other sensitive objects that could be present in the environment. This limits their extensibility
and makes them unsuitable for protecting users from untrusted mobile camera apps in general. In addition to
not being extensible, other block list based systems, such as Cardea [63] and I-Pic [2], also require significant
user effort to be set up for operation. For example, I-Pic only protects the privacy of bystanders faces and also
requires them to broadcast their presence, visual signatures, privacy policy etc. In order to adopt their approach
to protect users from diverse camera apps, users would have to identify sensitive objects in their environment in
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different contexts and provide appropriate visual signatures and privacy policies for each context which would
hamper their user experience. These systems also report high latency (order of seconds) in processing an image
and do not discuss real-time privacy protection on frames obtained from a live camera feed.

Jana et al. proposed an allow list based recognizer abstraction [38] within the operating system to limit AR apps
from directly accessing raw camera inputs. Their approach, however, is tied to certain objects related to most AR
apps and they do not discuss extension to new objects thereby limiting their compatibility with diverse camera
apps. More recent allow list based systems like WaveOff and PrivateEye[56] let users define objects of interest
using visual markers and treat everything else as sensitive. Subsequently when an app accesses the camera, they
run computer vision algorithms to detect the object of interest in camera frames and block everything else. While
being compatible with diverse camera apps as a result of being extensible to different objects, PrivateEye and
WaveOff still pose significant burden on the user.

PrivateEye can only be used with two dimensional objects and requires users to manually draw markers
around their object(s) of interest prior to using the camera. Users would also have to carefully position the
camera to ensure that the markers are visible. WaveOff, on the other hand, can also be used with 3-dimensional
objects and requires lesser effort. It provides users with a graphical user interface to capture and mark their
objects of interest prior to using a camera app. Once marked, users are protected from camera apps without any
additional effort. The accuracy of WaveOff, however, is dependent on the user’s skill in precisely marking these
objects. Thus, only careful users who pay close attention while marking these regions can benefit from WaveOff.
Additionally, WaveOff only detects object instances, which increases the effort required from users to mark each
object instance. For example, a user with multiple credit cards would have to provide references for each credit
card before using a card scanning app. We also note that WaveOff struggles to reliably detect certain objects
such as human faces (which are commonly associated with camera apps) even with precisely marked references
(§7.9). While PrivateEye and WaveOff are compatible with a live camera feed, they do not detect objects on every
camera frame. They report low frame rates corresponding to high detection latency when attempting to detect
objects on every frame. They overcome this by employing feature tracking across consecutive frames to maintain
frame rates that are acceptable for camera-based applications.

Aragorn also follows an allow list based approach to associate apps with different objects of interest to ensure
that apps can only see relevant objects from camera frames. However, Aragorn does not require users to provide
marked references for operation. In contrast to prior work, Aragorn leverages deep learning to accurately localize
the object of interest in camera frames while incurring minimal overhead. To extend support to objects that
were previously not recognized by Aragorn, we employ a novel training strategy that uses training images
from different sources and automatically infers their training labels. Aragorn only requires users to initially
associate objects with camera apps and occasionally answer yes or no questions to ensure robustness against
data poisoning. Thus, with Aragorn, users get privacy protection from a wide range of camera apps without
incurring significant effort. We summarize the comparison of Aragorn with prior approaches in Table 1.

3.2 Threat Model
In our threat model, a user seeks to use a camera app on their phone. We assume that the user has explicitly
provided permission to the app to access frames from the camera feed. Although the user has granted this
permission, the app is not trusted with the information it could potentially infer from the camera frames beyond
the intended object of interest. In the case of a credit card scanning app, we trust the app with information about
the credit card, but not with the background that captures information about the user’s scanning environment.

We assume that the app could make privacy-invasive inferences about the user’s environment (e.g., by running
machine learning models) from the camera frames or altogether transmit the frames to a third-party. While
the app is unconstrained with what it can do with information about the user’s environment, we assume that
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it cannot tamper with the phone’s operating system. Accordingly, we envision OS vendors (such as Google or
Apple) to implement Aragorn as part of their efforts to protect user privacy [10, 30]. For privacy protection, Apple
has already provided users with the ability to authorize which images in their Photos library can be accessed by
apps [11]. Integrating Aragorn within the OS protects it from the app via isolation.

Aragorn relies on a trusted remote server (maintained by the OS vendor) referred to as Aragorn server when
extending support to new objects. We assume that most users trust the OS vendors and thus, also trust Aragorn
server. However, some users can consider Aragorn server to be honest-but-curious in which case they do not trust
it with the confidentiality of their data. We consider both types of users in our threat model. We also assume that
most users are not malicious and would cooperate with Aragorn to improve privacy. However, a small fraction of
users can collude with one or more malicious apps to compromise Aragorn.

Under this threat model, our goal is to protect privacy without degrading app functionality over a wide range
of camera apps. We specifically focus on apps that operate with a live camera feed, but Aragorn can also operate
on previously captured camera images stored on the user’s device.

4 OVERVIEW

4.1 Design Principles
4.1.1 Devise a task-agnostic architecture: Camera apps accomplish a wide range of tasks. Devising independent
privacy solutions for each task would not scale, be difficult to maintain and potentially increase Aragorn’s attack
surface. Accordingly, Aragorn introduces novel mechanisms to train, evaluate, and deploy a machine learning
model (referred to as the sanitizer) that detects a given object of interest associated with an app and sanitizes the
camera frames by obscuring everything else (§5.3).

4.1.2 Minimize load on users: Aragorn seeks to protect the privacy of all users, regardless of their intent to take
up manual or cognitive load. In contrast to prior work that requires users to provide precisely marked samples
of their object of interest [56], Aragorn only requires a fraction of its users to occasionally answer yes or no
questions to secure the privacy of all users (§5.3.4).

4.1.3 Exercise the principle of least privilege: Since camera apps are untrusted in our threat model, Aragorn
operates within the OS and limits the capabilities provided to them. For instance, Aragorn does not permit apps
to directly access camera frames, instead, it lets apps access sanitized frames that only contain the intended object
of interest (§6).

4.2 Aragorn Architecture
Aragorn runs within the mobile operating system to intercept camera frames before they can be accessed by
camera apps. Aragorn employs a machine learning based object detector, referred to as the sanitizer, to ensure that
apps can only access a pre-established object of interest from camera frames. Aragorn also contains an auxiliary
remote server referred to as the Aragorn server to help extend the sanitizer to detect previously unrecognized
objects. Within the operating system, Aragorn operates in one of two workflows based on whether the sanitizer
can reliably detect a given object of interest (we refer to this as the steady-state workflow), or requires additional
training to do so (we refer to this as the transient workflow).
During its initial invocation in the steady-state workflow, an app specifies its object of interest from a list of

supported objects (credit cards, driver’s licenses, etc.), which can optionally be overridden by the user. Then,
during the app’s execution, the sanitizer blocks everything from camera frames retaining just the object of interest
before sending them to the app. We summarize this workflow in Figure 2.

Aragorn predominantly operates in the steady-state workflow. However, in case apps require support for a new
object (such as scanning a COVID vaccination card as discussed in §1), Aragorn switches them to the transient
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Fig. 2. In the steady-state workflow, Aragorn’s sanitizer ensures that camera frames only contain the preestablished object
of interest and obscures everything else before third-party camera apps can access them.

workflow. Prior to operating in this workflow, an app requests Aragorn to extend support to this new object.
Upon approving the app’s request, Aragorn allows it to process complete camera frames to ensure that users can
use the app, while using these frames to train the sanitizer with assistance from Aragorn server. Eventually, once
the sanitizer can recognize this object, Aragorn switches the app over to the steady-state workflow.

5 DESIGN
In this section, we first provide a detailed account of Aragorn’s steady-state and transient workflows from the
perspective of both apps and users. We then describe the design of the sanitizer which drives the overall design
of Aragorn.

5.1 Steady-state Workflow
Aragorn invokes the steady-state workflow in cases where Aragorn’s sanitizer has already been trained to reliably
detect and recognize the object of interest in context. Such an object could either correspond to a common user
object that is well represented in public datasets [42, 45] (pets, computers, food items etc.), and hence supported
by the sanitizer during Aragorn’s initial deployment, or a more nuanced object for which the sanitizer was
previously retrained via the transient workflow.

A camera app specifies a manifest file containing its intended object of interest from a list of objects supported
by Aragorn. Subsequently, when the user invokes the app for the first time, Aragorn presents them with a
one-time permission dialog asking to grant access to the specified object of interest as shown in Figure 3. Aragorn
also allows users to optionally override a previously assigned object of interest to an app using the interface
shown in Figure 4. Users can also use this interface to assign an object of interest to an app whose utility is not
tied to any particular object or an app that did not have one previously (e.g. assigning pet to a photo-sharing
app when uploading the image of a pet on the app). Upon establishing the object of interest, the app requests
camera frames as part of its execution. Aragorn then uses its sanitizer to only pick out the object of interest from
camera frames and blocks out the rest to produce sanitized frames, which are then sent to the app. Aragorn also
performs JPEG compression on these frames to purge high-frequency camera fingerprints (i.e., Photo-Response
Non-Uniformity or PRNU [47]).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 181. Publication date: December 2023.
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Fig. 3. Users can use this one-time dialog box presented
to them during an app’s initial invocation to grant access
to a specific object (requested by the app) from their
camera.

Fig. 4. Users can optionally use this interface to override
previously assigned objects of interest to camera apps.
They can also use this interface to assign objects of
interest to apps that did not have one previously.

While the app only gets access to the sanitized frames, Aragorn renders camera frames completely onto the
display to ensure that the user experience is not hampered. Accordingly, we do not allow apps to read the display
to stop them from accessing the complete camera frames. However, we do allow apps to write to the display.
While granting write access helps apps implement their own interfaces to better engage with users, malicious
apps could abuse this to attempt to invade privacy by asking them to position objects other than the established
object of interest. Aragorn thwarts such attempts in the steady-state workflow, since the sanitizer can accurately
detect the object of interest. As a concrete example, consider a case where the established object of interest is a
credit card. Even if an app attempts to trick users by asking them to position a different object, say a driver’s
license next to the card (or instead of the card), Aragorn would not detect this object as the object of interest,
thereby protecting user privacy. However, even in the steady-state workflow, Aragorn needs to communicate
with users to get their feedback on its predictions (§5.3.4), and apps can abuse their write access to interfere with
this communication. To prevent this, Aragorn only communicates with users for their feedback after the app has
completed its execution.

5.2 Transient Workflow
Aragorn invokes the transient workflow whenever there is a need to extend the sanitizer to detect a previously
unrecognized object. When an app wishes to access such an object from camera frames, it submits a request to
Aragorn server, specifying the name of the intended object.1 Once approved, Aragorn allows the app to initially
operate in the transient workflow. In this workflow, Aragorn lets the app process camera frames completely
(so that users can still use the app) while also using them to train the sanitizer for the new object. Since OS
vendors (who are trusted in our threat model) maintain Aragorn server, one way to train the sanitizer would be
to transmit these frames to Aragorn server for centralized training. However, some users may consider Aragorn
server to be honest-but-curious in which case they would not trust it with the confidentiality of their camera
frames. Thus, an alternate way to train the sanitizer would be to adopt federated learning. Once the sanitizer
is trained to recognize the object, Aragorn adds it to its list of supported objects and moves the app into the
steady-state workflow. During the app’s initial invocation, Aragorn informs users that they are in the transient
workflow and requests permission to use their frames for training. Since Aragorn does not need training images

1We discuss supporting requests from users in Appendix A.7.
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Fig. 5. Examples of frames sent to a credit card scanner, a QR scanner and a face verification system. In all 3 examples, we
see that the respective objects of interest (credit card, QR code or face) are also the salient objects present in the frame.

from all users (§7.6), it allows users to opt out of contributing their data to train the sanitizer. There is no feedback
phase in this workflow since the sanitizer is not invoked.

5.3 Sanitizer
The sanitizer is a YOLOv3 [61] object detector that can classify and localize a given object from its input. We use
YOLOv3 for the sanitizer since YOLO-based models have demonstrated fast and accurate predictions [27, 52, 59–
61] on diverse objects (vehicles, animals, furniture, electronics etc [20, 25, 45]) in various environments (aerial
images [77], microscopic images [46], images of moving objects in traffic [40, 69] etc). Given a camera frame as
input, the sanitizer simultaneously predicts [59] the classes and locations of objects contained in it. The classes
map to one or more of the objects the sanitizer has been trained to recognize and the locations are bounding boxes
of the predicted classes within the frame. In the steady-state, Aragorn preserves all objects from the sanitizer’s
predictions that correspond to the established object of interest and blocks everything else to produce a sanitized
frame which is then made accessible to the app. In case none of the detected objects in a camera frame map to
the specified object of interest, Aragorn blocks the entire frame.

5.3.1 Sanitizer training. To train the sanitizer (a supervised object detector), we need labeled frames containing
the intended object. To localize and classify this object, the labels should contain a class label as well as a
localization (bounding box) label. This data needs to be obtained from a reliable source. While in some cases, we
may be able to source this data from public datasets [42, 45], there could be more nuanced objects (such as credit
cards) that are not well represented in any public dataset. We cannot simply source this training data from the app
since we don’t trust it in our threat model. Thus, we source this training data (unlabeled frames) from the users
(most of whom are trusted in our threat model), while they use the app. We adopt a novel knowledge-distillation
based strategy to automatically label this data. In this section, we describe our strategy to train the sanitizer with
a centralized approach. We discuss how our strategy can be adopted with a federated approach in Appendix A.1.

We first describe the flow when the training data is provided by good users and then discuss potential attacks
from malicious users and their mitigations. To gather training data from users, we allow the app to initially run
in the transient workflow where it can access complete camera frames. In the intended execution of the app, we
expect these frames to contain the object of interest and thus, we forward them to the Aragorn server (from the
users who consented to share their frames). Note that users undertake no additional effort and merely interact
with the app as usual, and we use frames from their interaction as training images. Once we have gathered
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Fig. 6. In this figure, the red box shows the prediction of our supervised YOLOv3 [61] based sanitizer, while the blue box
shows the prediction of a U2-Net [54] salient object detector.

this data, we have training images containing the object of interest. The name of the object for which the app
requested support, serves as a common class label for these images. However, we do not yet have the location
(bounding box) of the object within these images.

To compute the bounding box labels for our training data, we rely on the fact that in most frames the object of
interest is also expected to be the salient object. Figure 5 shows camera frames passed to a credit card scanner, a
QR scanner and a face verification system, and we note that for each frame the object of interest is also the salient
object in the frame. Accordingly, we use an off-the-shelf salient object detector (U2-Net [54]) to localize the object
of interest in these frames. The localization label coupled with the common object label corresponding to these
frames is used to train a supervised object detector, which serves as our updated sanitizer. This entire training
procedure is executed at the Aragorn server, and once trained, the new sanitizer is shipped to user devices (as an
update to the OS). Prior research [68] has adopted a similar training strategy for human activity recognition.
However, they rely on a labeled dataset to first train a teacher model whose predictions then serve as training
labels for a student model. Aragorn cannot directly adopt their approach since there is no labeled dataset for
objects such as credit cards.
Once trained to recognize the new object, Aragorn switches the app back to the steady-state workflow. We

note that during the initial phase, when an app operates in Aragorn’s transient workflow, privacy is unprotected
from the app. We refer to the state when Aragorn is able to protect privacy in context of a new object as the state
of attaining “herd protection" for that object. We quantify the duration of the unprotected phase in terms of the
number of images required until herd protection is attained in §7.6.

5.3.2 Can a salient object detector function as the sanitizer? A salient object detector alone could potentially be
used as the sanitizer since the object of interest is expected to be the salient object in most cases. However, due to
its inability to classify the object of interest, it can pick any salient object as the object of interest. While we can
address these concerns by augmenting the salient object detector with a classifier, we instead choose to use an
integrated supervised object detector for the following reasons. First, an integrated supervised object detector
combines classification and localization into a single model [61]. The two tasks inform each other leading to
more accurate localization and classification as opposed to training two separate models, one for each task.
Second, at run time, we get both classification and localization results from a single model inference with a

supervised object detector, as compared to two separate inferences, one with a salient object detector and the
other with a classifier. Thus, a supervised object detector gives Aragorn higher efficiency.
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Fig. 7. This figure shows a user positioning a credit card
next to a driver’s license to provide poisoned data to
Aragorn.

Fig. 8. We ask users if the blurred regions in images
similar to the one in this figure only contain the intended
object of interest (credit card) during the preemptive
defense.

Anecdotally, we see in Figure 6 that even in the presence of multiple objects in a frame, Aragorn’s sanitizer (a
supervised object detector) more accurately localizes to the correct object (credit card in the figure) as compared
to U2-Net (a salient object detector). During training, the sanitizer learns to distil common object information
from multiple salient labels to only pick out the relevant object. We present a quantitative comparison of a salient
object detector against our supervised sanitizer in Appendix A.2.

5.3.3 Threat of data poisoning. Attaining herd protection relies on users operating as intended by only positioning
the expected object of interest in front of the camera. However, since not all users are trusted in our threat model
(or users can be tricked into scanning incorrect objects by malicious apps), herd protection is subject to data
poisoning attacks from users hired by malicious apps.

As a concrete example, consider a scenario where we seek to attain herd protection for credit cards. A malicious
app, intending to evade Aragorn to invade user privacy could initially hire users who intentionally scan other
objects, such as driver’s licenses, in addition to credit cards. As a result, once trained, Aragorn’s sanitizer would
also recognize driver’s licenses as credit cards. At this stage, once other users start using the app, any licenses
present in the background would also be exposed to the app. We show a poisoned image sample in Figure 7. More
generally, users colluding with an app can poison the training data with any generic objects that are expected to
be in user backgrounds to help the app interfere with Aragorn’s intended operation. While deep learning models
are naturally robust to poisoning at low injection rates (i.e. fraction of poisoned images in the training set) [75], a
malicious app can easily ensure an injection rate of 100% by only allowing users under its control to use the app
while operating in the transient workflow.

5.3.4 Crowdsourced validation to defend against data poisoning attacks. Aragorn relies on two different crowdsourced
strategies to defend against data poisoning attacks. The first strategy, which we refer to as the preemptive defense,
operates during the transient workflow and discards poisoned samples. The second strategy, which we refer to as

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 181. Publication date: December 2023.



181:12 • Venugopalan et al.

the reactive defense, operates in the steady-state workflow and detects if a previously trained sanitizer has been
poisoned. We rollback and retrain the sanitizer with fresh data on detecting that it had been poisoned.
Preemptive defense: This defense relies on our assumption that the majority of Aragorn’s users (i.e. all

mobile users in general) can be trusted, even if all the users of a particular app at a given point in time are
potentially malicious. We thus, take help from users to detect and discard poisoned images in the data obtained
from other users. Concretely, we first detect the salient objects in the images and block out the other portions.
Then, we blur the regions containing the salient objects and randomly ask other users if these images only contain
the expected object of interest (e.g. Does the blurred out region only contain a credit card?). We only include
the corresponding images in our training set for which users provided a positive response. Figure 8 shows an
example of an image displayed to users when extending to detect credit cards. In this case, we randomly ask
other users if the blurred portion of the image only contains credit cards.

Drawing from existing research [2, 33, 63] we blur images to retain overall information about the object present
in the image, while obscuring object specific information. We use a sufficiently high blur radius to ensure that
users cannot recover this information [34]. However, despite blurring, some information can still leak about
the object of interest. For example, in our evaluation in §7.8.1, we see that some users were able to guess the
gender and hair color of users from their driver’s licenses. We argue that targeted attempts by malicious users to
gather such information are not possible since Aragorn server randomly picks users to validate user data. When
OS vendors deploy Aragorn at a large scale (i.e., with billions of Android and iOS users) the probability of a
particular user’s images being validated by the same user would be negligible 2. Nevertheless, Aragorn server can
also choose to not employ the preemptive defense for an object that it deems to be sensitive and rely exclusively
on the reactive defense to thwart data poisoning attacks against that object. As we discuss in the next section,
doing so would require more frequent user involvement, which could lead to poor user experience. This defense
would be ineffective when detecting certain objects that look similar to other objects, since users only get to
see blurred images. For example, when asking users if an image only contains a particular document, it would
be difficult for users to respond since the contents of the document would not be visible to them. In such cases,
users can respond with a “Not Sure" option and we cover them using the reactive defense.
Reactive defense: This defense relies on the fact that all apps, including malicious ones that hire users to

provide poisoned data, would eventually engage with users who are not controlled by the app. Thus, once a
camera app completes its execution in the steady-state workflow, we annotate the frames produced during the
execution with the sanitizer’s predictions and show them to users for their feedback. For feedback, we ask users
if the annotated regions only contain the object of interest (e.g. Does the highlighted region only contain a credit
card?). Here, we do not blur or obscure the images in any way, since users only validate predictions on their own
camera frames. Like the preemptive defense, users only respond with a “yes" or a “no" to indicate whether they
were confident in the sanitizer’s predictions (unlike the preemptive defense, the images are unblurred, making it
easier for users to respond). If the number of negative responses from users crosses a particular threshold, we infer
that our trained sanitizer has been subject to poisoning and roll it back to a previous version known to be robust
to poisoning. We transition apps associated with the suspected poisoned object back to the transient workflow to
train on fresh images. We trigger manual inspection in case the sanitizer needs to be rolled back repeatedly to
detect and stop apps that attempt to force Aragorn back to the transient workflow. We keep running this defense
periodically instead of running it for a fixed period to ensure that apps cannot evade this defense by initially
hiring users to provide false feedback. The reactive defense also serves as a way to assess the generalizability of
the sanitizer and detect potential changes to the design of the object of interest. We run the reactive defense across
an optional channel for all users, where they can choose to not respond and a forced channel where random

2When deployed at a large scale, the frequency at which we request a response from the same user would also be low, thereby having minimal
impact on user experience.
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Fig. 9. The camera service is ideally suited to incorporate Aragorn, since it is both, hardware independent (unlike the
hardware abstraction layer) and isolated from the app in a separate process (unlike the application framework).

users are necessarily asked to respond. The optional channel allows us to evaluate against diverse use cases
and backgrounds. However, relying solely on the optional channel could lead to not only insufficient, but also
potentially false feedback from users colluding with the app. We detect such cases by correlating with responses
in the forced channel.
There could be some cases where the sanitizer makes mistakes in presence of specific triggers which would

be hard to detect despite having both channels. For example, the sanitizer could be poisoned with a backdoor
such that it correctly detects credit cards in most cases, but detects the background too, if a specific trigger
object, such as a pair of glasses is present in the background [75]. However, such cases can be mitigated with the
preemptive defense. Thus, Aragorn relies on both, the preemptive and reactive defenses to cover for each other’s
shortcomings to defend against diverse data poisoning attacks.

6 IMPLEMENTATION
We implement Aragorn within Android 13 by modifying the camera subsystem of the Android Open Source
Project (AOSP). Since we envision Aragorn being implemented by mobile OS vendors, we integrate it within
the Android OS in our prototype instead of implementing it as a camera library. This also provides protection
from apps that attempt to tamper with or bypass Aragorn to directly access the camera. We discuss an alternate
implementation of Aragorn as a camera library in §8.3.

Android’s camera subsystem is broadly split into 3 distinct processes that communicate using binder interfaces:
the hardware abstraction layer (HAL), the camera application framework, and the camera service. On one end,
the HAL directly interacts with the camera driver and at the other, apps use camera application frameworks
(such as Camera2 or CameraX) to access the camera. The camera service connects the application framework to
the HAL by exposing standard interfaces to both. Concretely, the application framework uses these interfaces to
submit a request to the HAL to capture camera frames, and the HAL invokes callbacks present in the camera
service to deliver frames in response.
We integrate Aragorn’s sanitizer with the camera service to reap dual benefits of preventing apps from

bypassing the sanitizer as well as not having to maintain multiple hardware dependent implementations. Since
the camera service runs in its own process and is the only process that can access the HAL, apps would necessarily
have to compromise the OS to bypass the sanitizer. Further, since the camera service is hardware independent,
the same implementation can be used on all devices. Alternatively, integrating the sanitizer within the HAL
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would also protect it from apps, since it is the only process that can access the camera driver, but doing so would
require maintaining different implementations based on the hardware. In contrast, integrating the sanitizer with
application frameworks would not require different implementations, but apps would be able to evade Aragorn
by directly accessing the camera service. Figure 9 summarizes this discussion.

We implement the sanitizer using TensorFlow Lite C++ API [70] and execute it on the CPU. In the steady-state
workflow, an app that uses Aragorn would specify a manifest file containing its intended object of interest
from the global list of objects recognized by Aragorn. As discussed in §5.1, users can choose to grant or deny
permission to the app to access the specified object, or assign a different object of interest to the app (again from
the global list of objects). However, Aragorn can also work with apps that do not produce such a requirements
file, since users can assign objects of interest to them (from the global list of objects recognized by Aragorn). Thus,
Aragorn is also backwards compatible with existing camera apps. We measure Aragorn’s system performance in
§7.4 and describe Aragorn’s federated implementation in Appendix A.1

7 EVALUATION

7.1 Privacy
We evaluate the effectiveness of Aragorn’s sanitizer in removing background information.3 This evaluation
measures the sanitizer’s ability to accurately detect and localize to the object of interest. In context of privacy, we
are interested in measuring the sanitizer’s classification false positive rate, i.e., mistakenly detecting a background
object as the object of interest, and the localization false positive rate, i.e., regions that were predicted to contain
the object of interest but contain the background. We first, perform this evaluation when having credit cards as
the object of interest and then having faces as the object of interest.
For credit cards, we run our evaluation on a dataset of credit card scan videos from prior research [21]. This

dataset contains videos from the live camera feed of 19 different users while scanning 30 credit cards each using
the Daredevil card scanning app. On a subset of 2, 206 frames from 20 random scan videos from this dataset, the
sanitizer has a classification false positive rate of 10.99% and a localization false positive rate of 7.96%. For faces
as the object of interest, we evaluate the sanitizer on images from the public CASIA-Webface dataset [18]. We
pick 200 random face images from this dataset and combine them with 200 random indoor background images
(to evaluate images that do not contain a face) from the indoor scene recognition dataset [55]. On this dataset,
the sanitizer has a classification false positive rate of 0% and localization false positive rate of 8.81%. These low
values for the false positive metrics indicate lesser information about user background being captured in the
sanitized frames, leading to improved privacy. We report these results in Table 2.

3We present results in context of centralized learning and anticipate similar results with federated learning [24].
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Table 2. Low false positive rates in detecting credit cards and
faces indicate that the sanitized frames produced by Aragorn
capture minimal background information.

Object of Classification Localization
interest FPR FPR
Credit cards 10.99% 7.96%
Faces 0.00% 8.81%

Fig. 10. Chart showing the proportion of frames in the card
scanning dataset where Aragorn removed sensitive objects
from the background.

We also qualitatively evaluate Aragorn’s ability to remove potentially sensitive information from camera
frames. On 2, 206 frames from 20 random videos from the card scanning dataset, we manually identified 15
potentially sensitive objects (such as a document containing the user’s address, a pet, etc). We then measure the
ratio of frames where these objects were blocked by the sanitizer to the frames that originally contained them.
Figure 10 shows that the sanitizer removes 11 out of the 15 identified objects from 97% of frames and removes the
other 4 objects on over 80% of frames that contained them. Overall, these results show that Aragorn’s sanitizer
significantly reduces the number of frames containing potentially sensitive objects.

7.2 Utility
Aragorn should not prevent apps from providing their intended utility to users. We evaluate the impact of Aragorn
on the utility of a public credit card scanner, Daredevil [21] and a public face verification system, MobileFaceNet
[67].

7.2.1 Credit card scanner. We measure Daredevil credit card scanner’s precision and recall on a subset of 30
random scan videos from the card scanning dataset. We then sanitize frames from these videos and measure
the card scanner’s precision and recall for comparison. Here, precision refers to the ratio of the number of scan
videos on which the card scanner predicts the right number to the number of scan videos on which it predicted a
credit card number (including incorrect credit card numbers). Recall is the ratio of the number of scan videos
on which the card scanner is able to predict the right number to the total number of scan videos. The metrics
in Table 3 show a slight increase in both precision and recall when using Aragorn. We attribute this increase
to the removal of extraneous information, helping the card scanner localize the card number better. Running
Daredevil card scanner on our prototype of Aragorn (§6) yields an average scanning duration of 6.40 seconds
on a Google Pixel 7 phone. Equivalent runs without incorporating Aragorn into the camera subsystem yield an
average scanning duration of 6.23 seconds. Thus, Aragorn only increases the latency of Daredevil card scanner by
2.73%. We observe a similar increase in latency (3.07%) on our prototype implemented on a Google Pixel 2 phone.

7.2.2 Face verification. We first measure the verification accuracy of the MobileFaceNet face verification
system [67] on a subset of 2, 104 images from 220 distinct identities from the standard Labeled Faces in the
Wild [35] dataset. We then measure its verification accuracy on the same set of identities after sanitization. We
evaluate 10, 000 random pairs of images of the same identities and 10, 000 random pairs of images of different

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 181. Publication date: December 2023.



181:16 • Venugopalan et al.

Table 3. Results showing that Aragorn does not affect the utility of Daredevil card scanner [21] and MobileFaceNet [67] face
verification system.

Credit cards Faces
Precision Recall Acc. on same identity Acc. on diff. identities

No sanitizer 96.15% 83.33% 91.09% 92.55%
With sanitizer 100.00% 86.66% 92.01% 92.02%

identities selected from the dataset. Before sanitization, MobileFaceNet has an accuracy of 91.82% in detecting
if image pairs belong to the same or different identities (using their specified threshold of 0.8). Repeating the
experiment on sanitized images yields an accuracy of 92.01% (without changing the threshold). We report detailed
results in Table 3. MobileFaceNet crops to a tight bounding box around the user’s face as an initial preprocessing
step before extracting an embedding for verification. We suspect that this step extracts the same crop in both
cases, leading to similar accuracies. We do not measure the latency introduced by Aragorn to MobileFaceNet
since their system does not work with a live camera feed.

7.3 User Identification
Users have been identified based on the background information captured by their camera frames [71]. In this
section, we first show an example of how malicious apps can automatically identify users using background
information captured in their camera frames as fingerprints.We then evaluate Aragorn’s effectiveness in thwarting
such an attack. We conduct this evaluation on the previously described card scanning dataset from 19 users.
While we present results with credit cards as the object of interest, our goal with these experiments is to explore
the extent to which users can be identified from the background information in the camera frames irrespective of
the presence of identifying information in the object of interest itself.

7.3.1 User identification attacks. In this section, we first describe a closed-world user identification attack where
the number of users is bounded and then describe an open-world attack where the number of users is not
bounded.

Closed-worldWe first consider a multi-class attack setting, where the malicious app has representative images
from each of its users. Given a new camera frame, the app’s goal is to use the background information in the
camera frame to identify a returning user. Concretely, we train a 19-class classifier, with each class representing a
distinct user from the dataset. While this closed-world scenario is not practical in the real world, it simulates a
harder use case for Aragorn. We subsequently evaluate Aragorn with a more practical attack. To ensure that
the model only uses background information to identify users, we block out the credit cards in the frames and
also purge high-frequency fingerprints tied to the device, i.e. PRNU [19, 47] via JPEG compression [74] (See
Appendix A.8). We train the classifier using a convolutional neural network (CNN) on frames from videos in the
card scanning dataset. The model attains an accuracy of 97.32% on a 10% held-out test set.
Open-worldWe now consider a more practical scenario, where a malicious app does not need to know the

total number of users to identify them. The app employs a model, which we refer to as a background fingerprint
model, to determine if the background information contained in a pair of images map to the same user. The
app needs at least one reference frame for a user, and all subsequent frames obtained are compared against the
reference to identify the user.

Drawing from existing research [19, 43, 62], we use the triplet loss to train the background fingerprint model.
We train the model to produce embeddings such that the Euclidean distance between those extracted from frames
captured by the same user are below an empirically determined threshold, while the distance between those from
two different users is above the threshold. We train this model on frames from 15 users in the card scanning
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Table 4. The first row shows the accuracy of two different models that identify users from the background information
of their camera frames. The second row shows the accuracy of the same models when attempting to identify users from
Aragorn’s sanitized frames.

Multi-Class Classifier Background Fingerprint Model
(Closed-world) (Open-world)

No sanitizer 97.32% 83.41%
With sanitizer 5.25% 50.09%

dataset and evaluate it on the remaining 4 users. On 1, 000 random pairs of frames captured by the same users,
the model makes correct predictions on 804 pairs. On another set of 1, 000 random pairs of frames from different
users, the model makes correct predictions on 863 pairs. The overall test accuracy of the attack is 83.41%. These
results demonstrate that malicious apps can use background information in credit card scans to identify users.

7.3.2 Aragorn vs. user identification attacks. We test both attack models on sanitized frames produced by Aragorn.
We use the sanitizer to sanitize images from the same test sets described above while not changing the training
images. Table 4 shows that the multi-class classifier’s attack accuracy drops from 97.32% on complete camera
frames to 5.25% on sanitized frames. Similarly, the background fingerprint model’s attack accuracy drops from
83.41% on complete camera frames to 50.09% on sanitized frames.
For both attacks, the attack accuracy drops to near random chance after sanitization. Specifically, 5.25%

accuracy for 19-class classification is equivalent to randomly guessing between 19 classes. 50.09% accuracy for
the background fingerprint model is also equivalent to random guessing (binary decision of whether two frames
were captured by the same user). We were unable to train similar fingerprint models when training on sanitized
frames. See Appendix A.3 for details. In conclusion, these results show that Aragorn’s sanitizer removes the
background information in camera frames that can be used by apps to identify users.

7.4 System Performance
To facilitate practical adoption, it is important to assess Aragorn’s impact on system performance. In this section,
we measure Aragorn’s impact on system performance by reporting the drop in camera frame rates (in frames per
second), increase in CPU consumption (in percentage), increase in memory consumption (in MB), and increase in
battery consumption (in percentage) when running our prototype of Aragorn (§6) on a Google Pixel 7 phone.
We first establish a baseline for the aforementioned metrics (i.e., without running Aragorn) by running a

camera app that renders frames from the camera on an unmodified version of the AOSP source code [6]. Then,
we measure these metrics when running the same camera app while incorporating Aragorn within the same
AOSP source code. In these experiments, we used a sanitizer that supports 3 objects (credit cards, QR codes and
faces). This sanitizer occupies 5.6MB on disk.
We use Android Studio’s profiler [9] to measure CPU and memory consumption. We use BatteryStats and

BatteryHistorian [8] to measure battery power consumption since Android Studio’s energy profiler only provides
coarse-grained power readings (i.e. Light, Medium and Heavy). We put the phone in airplane mode while running
these experiments to prevent interference from network usage. We position a credit card in front of the camera
and let the camera app run for 30 seconds and report the average readings over 5 trials. From Figure 11, we see
that the average frame rate drops by only 0.01 frames per second and the average battery consumption goes up
by only 0.06% when using Aragorn. The average increase in CPU consumption and memory consumption when
using Aragorn is comparable to that of prior research[56].
We also repeated these experiments with a sanitizer that can support 14 objects and observed similar results.

Since the sanitizer is a YOLOv3 model, supporting more objects only increases the number of activations in the
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Fig. 11. The four plots show the drop in frame rates, increase in CPU consumption, increase in memory consumption and
increase in battery consumption when running Aragorn on a Google Pixel 7 device.

last layer of the model. This does not lead to a significant increase in the number of computations performed,
resulting in similar impact on system performance.

Table 5. Aragorn incurs reasonable overhead to system performance on different Android phones dating back to those
released in 2017.

Frame Rate CPU Memory Battery
(Frames per second) Consumption (%) Consumption (MB) Consumption (%)

Device Release Without With Without With Without With Without With
Date Aragorn Aragorn Aragorn Aragorn Aragorn Aragorn Aragorn Aragorn

Pixel 2 October 2017 29.69 19.79 3.86 36.33 108.56 151.28 0.36 0.43
Pixel 3 October 2018 29.43 20.55 4.43 36.33 103.73 142.08 0.32 0.36
Pixel 5 October 2020 25.39 20.75 3.57 32.67 96.93 143.47 0.24 0.29
Pixel 6 October 2021 29.66 29.45 5.29 25.17 111.19 241.98 0.23 0.29
Pixel 7 October 2022 29.59 29.58 4.73 23.2 112.22 233.22 0.23 0.29

We also measured Aragorn’s system performance on 4 older phones (Pixel 2, Pixel 3, Pixel 5 and Pixel 6).
On all phones barring the Google Pixel 2, we approximated these metrics by incorporating Aragorn within the
aforementioned camera app since the bootloader on these phones was permanently locked. We report Aragorn’s
system performance on all phones (including Pixel 7) in Table 5. From the table, we see that Aragorn’s impact on
CPU consumption, memory consumption and battery consumption on the older phones is comparable to that
on the Google Pixel 7. While we see a higher drop in frame rates on the Pixel 2, Pixel 3 and Pixel 5 phones, the
resultant frame rates are still adequate to ensure real time operation for most camera apps [56].
Overall, we see that Aragorn’s impact on system performance is reasonable for adoption across different

phones dating back up to 2017. We also highlight that Aragorn only incurs this overhead when the camera is in
use and not otherwise.
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7.5 Robustness to Different Camera Models and Environments
While Daredevil’s card scanning dataset [21] contains credit card scans from real users, it only captures scans
captured in different indoor environments on iPhone cameras. In this section, we evaluate the sanitizer’s detection
accuracy across different indoor and outdoor environments. We also evaluate the detection accuracy across
camera models that have different resolutions in terms of mega pixels.
Concretely, we capture credit card images in 4 indoor environments (lab, gym, library and restaurant) and 4

outdoor environments (parking lot, patio, gym entrance and library entrance) across 4 camera models having
resolutions of 5 MP, 12.2 MP, 50 MP and 108 MP 4. Table 6 shows the sanitizer’s classification and localization
accuracy for each camera model across all environments. Overall, we see that the sanitizer maintains 100%
classification accuracy and roughly maintains 80% localization accuracy across all environments and camera
models. We believe these results are not surprising since YOLO-based models have already seen applications in
diverse environments.
We also evaluated the sanitizer’s accuracy in detecting credit cards when capturing frames at 5 different

resolutions (640x360, 1280x720, 1920x1080, 3840x2160 and 2268x4032) on a 12.2 MP camera at our lab and
observed similar results.

7.6 Herd Protection
In this section, we quantify the number of training images needed to attain herd protection for certain objects. It is
important to estimate when herd protection can be attained since privacy is unprotected until then. Accordingly,
in this section, we evaluate training the sanitizer in two potentially difficult scenarios, one where we assume that
we had previously gathered driver’s license images and need to gather images of credit cards and vice versa. We
consider these to be difficult scenarios since these objects look similar and have the same form factor, thereby
making it difficult for the sanitizer to discern differences between them.

We report the number of training images we need for each object given that we had previously gathered data
for the other object. Concretely, we report the number of credit card images we need to train the sanitizer in three
different use cases: (1) where we had previously gathered a large number of driver’s licenses (85, 669 images), (2)
previously gathered fewer driver’s licenses (1, 719 images) and (3) not gathered any driver’s licenses. We then
report the equivalent metrics for the number of driver’s license images needed given that we had previously

4Blu Advance L5, Google Pixel 2, Google Pixel 7 and Samsung S21 Ultra respectively

Table 6. Aragorn maintains 100% classification accuracy and roughly 80% localization accuracy when detecting credit cards
in different environments on different camera models.

5 MP 12.2 MP 50 MP 108 MP
Class. Loc. Class. Loc. Class. Loc. Class. Loc.

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
Lab 100% 77.4% 100% 82.8% 100% 82.4% 100% 84.1%
Restaurant 100% 81.2% 100% 85.3% 100% 81.6% 100% 83.0%
Gym 100% 79.6% 100% 81.5% 100% 80.0% 100% 78.5%
Library 100% 80.7% 100% 82.2% 100% 81.4% 100% 82.4%
Patio 100% 78.0% 100% 79.4% 100% 82.0% 100% 80.2%
Parking Lot 100% 76.8% 100% 85.2% 100% 81.0% 100% 82.1%
Gym entrance 100% 81.1% 100% 84.0% 100% 82.7% 100% 84.1%
Library entrance 100% 76.8% 100% 83.1% 100% 83.8% 100% 83.8%
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gathered credit card images. We computed these metrics by iteratively increasing the number of images of the
new object until we attain acceptable classification and localization accuracies.

Table 7. Results in this table show show that the sanitizer needs less than 500 images of the new object, when there is a
large number of images of the other object. Additionally, to support both objects, the sanitizer needs close to 1700 images of
each object. The sanitizer needs less than 900 images to support each object in isolation.

Num. Images Credit Card Driver’s License
Credit Cards Driver’s Licenses Class. Accuracy Loc. Accuracy (IOU) Class. Accuracy Loc. Accuracy (IOU)
449 85,669 100.00% 84.85% 100.00% 93.30%
85,649 461 100.00% 89.71% 100.00% 90.40%
1697 1719 100.00% 83.52% 100.00% 92.24%
0 882 N/A N/A 100.00% 82.43%
869 0 100.00% 80.12% N/A N/A

We use two datasets corresponding to scanning credit cards and scanning driver’s licenses, both obtained from
the authors of Daredevil. To label them, we use the𝑈 2−Net salient object detector [54] to generate the bounding
boxes and assign class labels based on the objects in the dataset (i.e., credit card or driver’s license).
Table 7 reports our results on held-out test sets containing 270 samples for each object. From these results,

we see that in all use-cases fewer than 1, 800 images of the new object are sufficient to attain herd protection.
Concretely, we see that we attain 100% classification accuracy and over 84% localization accuracy (IOU) with
fewer than 500 images of the new object when we had previously trained on close to 86, 000 images of the other
object. Similarly, we see that 1, 697 images of the new object are sufficient to attain 100% classification and 83.52%
localization accuracy when we had previously trained the sanitizer on 1, 719 samples of the other object. Lastly,
training on the new object with no previous history of the other object also requires fewer than 900 images of
the object to attain 100% classification and over 80% localization accuracy.
Thus, even if we use one frame per user for training, as long as the app seeking Aragorn to recognize a new

object can engage with at least 1, 719 users, we would attain herd protection relatively quickly, even in case
the sanitizer needs to detect similar objects like credit cards and driver’s licenses. These numbers validate the
flexibility in our design where users can choose to opt out of sharing their camera frames with Aragorn server.

7.7 Training Stability
In this section, we evaluate if retraining the sanitizer to detect a new object impacts its ability to detect previously
recognized objects. Our results in §7.6 show that the sanitizer maintains high accuracy when retrained to detect
an object that looks similar to a previously recognized object (i.e., credit cards and driver’s licenses).
We run a similar experiment to see if the sanitizer can maintain high accuracy when retraining the sanitizer

on an object that is dissimilar to a previously recognized object. Concretely, we train the sanitizer on credit cards
and faces. For credit cards, we use the card scanning dataset as before and use the CASIA-Webface dataset [18]
for faces. After training, the sanitizer attains 100% and 97.27% classification accuracy for faces and credit cards
respectively. Correspondingly, the sanitizer attains 77.94% and 84.10% localization accuracy for the two objects.
These high accuracies show that retraining the sanitizer is stable.

We also highlight that Aragorn employs multiple sanitizers (each detecting a distinct set of objects) when
supporting a large number of objects at scale (Appendix A.5). Employing multiple sanitizers also aids with
stability when retraining to support a new object since we can choose to extend an appropriate sanitizer based
on the new object.
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7.8 Crowdsourced Validation
We simulate Aragorn’s preemptive defense with a user study,5 where we show blurred and sanitized images
(using the salient object detector as described in §5.3.4) of clean and poisoned credit cards (we define clean and
poisoned credit card images in context of our evaluation in the next paragraph) and ask participants if the images
only contain credit cards. We also ask them to describe any other potentially sensitive information they are able to
glean from these images. We then quantify the proportion of poisoned images that remain after removing images
based on responses from the study. We capture clean and poisoned images of credit cards for the user study. The
clean images simulate users scanning credit cards, where objects could be present in the background but are not
intentionally placed around the card. For poisoned images, we either capture images of driver’s licenses in place
of cards, or position driver’s licenses close to credit cards, similar to the image shown in Figure 7. Overall, our
dataset contains 140 images, of which 38.75% (54 images) are poisoned.

Fig. 12. Chart showing the effectiveness of Aragorn’s preemptive defense in detecting poisoned images. Based on the majority
of responses, we were able to remove 100% of poisoned images in our dataset while losing less than 6% of clean images.

7.8.1 Preemptive defense. We obscure images in our dataset to only retain blurred out salient objects as described
previously (§5.3.4). We randomly show these images to participants of our user study (using Google forms) and
ask them if each image only contains a credit card. Participants can respond with a “Yes", “No" or “Not Sure".
Each image also has a text box where participants are asked to describe any potentially sensitive information
they can infer from the image. We ran the user study for 2 weeks and obtained results from 35 different
participants. Based on the majority of responses, we remove all 54 poisoned images from our dataset. Of the 86
clean images, participants were unsure of 4 images, and incorrectly marked one clean image as poisoned. Thus,
with a conservative approach of treating unsure responses as poisoned, we are able to retain 94.16% of clean
images from the dataset, while completely removing all poisoned images (see Figure 12). We manually peruse
the descriptive responses from participants and observe that none of them were able to infer any sensitive or
personally identifiable information from the images shown to them. At best, they were able to identify certain
cards as belonging to Visa or MasterCard, and in some cases guess the users’ hair color or gender based on their
image in driver’s licenses. We were also unable to sharpen these images to recover any sensitive information
with simple traditional vision filters as well as complex deep learning algorithms. See Appendix A.4 for details.

Current research [75] shows that adversaries who poison as little as 10% of a dataset can exploit models trained
on that data. However, our experiment shows that we are able to completely remove poisoned images, making
Aragorn resilient to data poisoning attacks using the preemptive defense.

7.8.2 Reactive defense. With the reactive defense, we expect most users to clearly respond to whether the
sanitizer had made the right prediction, since they are shown predictions from the sanitizer on unobscured
frames from their own camera. To verify this expectation, we ran an experiment where 3 authors of this paper
5Our university’s IRB reviewed our user study and exempted it from IRB.
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independently observed the sanitizer’s predictions on 10 random frames each from 10 different scans from the
card scanning dataset. As expected, all three authors ended up picking the exact frames as frames on which the
sanitizer had made mistakes.

7.9 Comparison with WaveOff
Similar to Aragorn, WaveOff also employs an extensible allow list based approach to protect privacy. Aragorn
primarily differs from WaveOff in terms of automation. WaveOff provides users with a graphical user interface
that they can use to capture and mark their objects of interest prior to using a camera app. Once marked, users
are protected from camera apps without any additional effort. The accuracy of WaveOff, however, is dependent
on the user’s skill in precisely marking these locations. Thus, only careful users who pay close attention to
accurately mark these regions can benefit from WaveOff.
In this section, we compare the accuracy of Aragorn and WaveOff to detect objects that are often associated

with camera apps. Concretely, we measure the classification and localization accuracies of WaveOff on credit
cards and faces and compare them to Aragorn. WaveOff matches BRISK features [44] extracted from a given
test image against those from a marked reference to localize to the object of interest in the test image. In our
evaluation, we threshold the number of matches to classify the presence of the object of interest within the test
images6 and draw the smallest bounding box that covers all matches to localize to the object of interest.

Table 8. Results showing that Aragorn more reliably detects and localizes to both credit cards and faces when compared to
WaveOff.

WaveOff Aragorn
Object of interest Class. Accuracy Loc. Accuracy (IOU) Class. Accuracy Loc. Accuracy (IOU)
Credit cards 80.24% 31.50% 91.32% 79.82%
Faces 50.04% 2.78% 98.16% 75.17%

7.9.1 Comparison on credit cards. We use data from the card scanning dataset. We pick 1, 021 random frames
corresponding to 10 random scan videos, each containing a different card. We then take one sample image of
each card in this set and mark a tight bounding box around the card to use as a reference image for each scan
(to evaluate WaveOff in context of a careful user). At the empirically determined optimal threshold, WaveOff
has a classification accuracy of 80% on this test set while Aragorn has a classification accuracy of 91.32%.
Correspondingly, WaveOff has a localization accuracy of 31.50%, while Aragorn has a localization accuracy of
79.82%. We summarize these results in Table 8.

7.9.2 Comparison on faces. We observe that WaveOff is unable to detect human faces, despite using tightly
cropped reference images, even when user backgrounds do not alter significantly. We first quantitatively evaluate
WaveOff on 200 random face images from the CASIA-Webface dataset [18] and 200 random indoor background
images from the indoor scene recognition dataset [55]. Across 10 different thresholds for the number of matchings,
WaveOff has a rough classification accuracy of 50%, with the highest recorded accuracy being 50.04%. WaveOff
correspondingly has a localization accuracy of 2.78%. On the same dataset, Aragorn reports a classification
accuracy of 98.16% and a localization accuracy of 75.17%. While the CASIA-Webface dataset allows us to evaluate
with a large number of faces, the images are not representative of users looking into their mobile cameras. We
thus run a qualitative evaluation of WaveOff, using 10 images each of 2 authors of this paper looking into the
6We also attempted to threshold based on the area covered by the matched regions but observed higher accuracies for WaveOff when
thresholding using the number of matches.
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camera. On these images too, we observe that WaveOff was unable to localize to the face. We attribute the lower
accuracy of WaveOff to the inability of BRISK features to sufficiently represent variations in human faces, with
Aragorn overcoming this using learned features.

8 DISCUSSION

8.1 User-burden with Aragorn
With Aragorn, users do not have to take any measures for privacy protection beyond answering "Yes" or "No"
questions. In contrast, systems proposed by prior research [2, 56, 63] require users to provide precise visual
indicators for protection. Furthermore, unlike WaveOff, the user-burden is shared with Aragorn. Concretely,
WaveOff can detect the object of interest with higher accuracy when users provide more precisely marked
references. Since these references are local to each user, WaveOff offers better protection to those users who can
take up the burden of providing precise references. Since Aragorn uses the same sanitizer for all users, Aragorn
can refine the sanitizer to protect the privacy of all users even if all users don’t respond to Aragorn’s questions.

Aragorn’s design choice of incorporating two crowdsourced strategies also serves to reduce the burden on users.
Aragorn’s reactive defense incurs lower cognitive burden since users only answer questions on the sanitizer’s
predictions on their own unblurred frames (e.g. Does the highlighted region only contain a credit card?). However,
employing the reactive defense for each and every interaction the user has with their camera could be cumbersome.
Thus, Aragorn also employs the preemptive defense to reduce the frequency at which it invokes the reactive
defense. Aragorn’s preemptive defense asks users to answer questions on blurred frames from other users to
prevent data poisoning (e.g. Does the blurred out region in the image only contain a credit card?). Aragornonly
employs this defense when there is a need to extend the sanitizer to detect objects that are not well represented
in any public datasets. Thus, users will face no burden with the defense when Aragorn operates in its primary
steady-state workflow or when extending support to objects that are well-represented in public datasets (such as
pets). We reduce user burden when using the preemptive defense by allowing users to respond with a “Not Sure”
option.

8.2 Information Captured within Sanitized Frames
Apps cannot infer which objects were hidden as a result of sanitization since Aragorn does not detect objects to be
hidden, but detects objects to be shown and hides everything else. Thus, the objects that remain within sanitized
frames are the objects of interest that users have consented to share with an app. Protecting private information
within the object of interest is outside the scope of our threat model and is one of Aragorn’s limitations (§8.5).

Additionally, our experiments in §7.1 show that 80% of frames from the card scanning dataset did not contain
any of the identified sensitive objects after sanitization. Results in §7.3 empirically show that users cannot be
identified from their sanitized frames. We were unable to train any models to identify users from their sanitized
frames even when training models on sanitized frames (Appendix A.3).

8.3 Aragorn as a Camera Library
Aragorn can also be deployed as a camera library instead of being integrated within the OS. Such a deployment
would still have to be developed and maintained by the OS vendors since users are more likely to trust OS vendors
over third-parties. For example, Google can incorporate Aragorn within its Jetpack [7] camera libraries, such as
CameraX [5]. However, such a deployment can only operate in a weaker threat model where apps do not attempt
to tamper with or bypass Aragorn’s sanitizer to directly access camera frames. This is because integrating the
sanitizer within the OS isolates it from the app by executing it in a different process. Thus, when implemented as
a camera library, Aragorn cannot benefit from process isolation for protection from the app. This concern can be
potentially mitigated through a rigorous code review of the app.
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8.4 Customizing to Users’ Privacy Preferences
Our proposed design and implementation of Aragorn in this paper focuses on enhancing privacy while preserving
user experience. Aragorn accomplishes this by automatically sanitizing camera frames to only contain user-
authorized objects of interest. Aragorn enables customization in its current form by allowing users to specify
their intended object of interest. Aragorn ultimately takes the user’s preference into account by allowing them to
override the object of interest specified by an app.

Alternatively, as opposed to automatic sanitization, users may prefer to know what was revealed to apps from
their camera frames. We can support such preferences too by recording camera frames and replaying them to the
user. Users can also employ Aragorn to sanitize images stored on their device. In this case, Aragorn’s sanitizer
would operate on these images as opposed to operating on a live camera feed.

8.5 Limitations of Aragorn
8.5.1 Sensitive information within the object of interest: Aragorn is designed to protect privacy while retaining
app utility by allowing apps to only process regions within camera frames that contain their object of interest.
Apps can still attempt to invade privacy via sensitive information within the object of interest. A finer-grained
sanitizer that can identify and isolate sensitive information within the object of interest can help address this
limitation.

8.5.2 Supporting uncommon objects: Aragorn can support objects that are represented in public datasets as well
as more nuanced objects that are requested by apps, since we train on data from the users of the app. Aragorn,
however, cannot support uncommon objects. Assuming that the uncommon object is still the salient object in
camera frames, Aragorn can employ a salient object detector to detect them.

9 CONCLUSION
While mobile cameras allow app developers to implement rich functionalities, their unfettered access also poses
a serious threat to privacy. Thus, it is important to limit camera access of mobile apps. To address this problem,
we presented Aragorn, a new privacy-enhancing system that uses deep learning, knowledge distillation, and
crowdsourcing to automatically and extensibly implement fine grained object-level permissions for mobile camera
apps. Aragorn protects privacy by limiting access of camera apps to sanitized camera frames that contain only
user-designated objects. Our evaluation showed that Aragorn can accurately sanitize camera frames without
degrading app functionality in a robust and efficient manner.
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A APPENDIX
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Fig. 13. Training the sanitizer in the transient workflow with a centralized implementation (left) involves transmitting
camera frames to Aragorn server which would then infer localization labels to train the sanitizer. In contrast, a federated
implementation (right) would locally infer the localization labels and compute updates to the parameters (trains) of a local
sanitizer within the user’s device. Aragorn server would then aggregate updates from multiple devices to train a global
sanitizer.

A.1 Aragorn with Federated Learning
Aragorn’s federated implementation would make use of a local sanitizer present on each user’s device and a
global sanitizer in Aragorn server. Here, we would execute the training procedure described in § 5.3.1 within
the user’s device to compute parameter updates to the local sanitizer. Then, we would transmit these updates
to Aragorn server which would aggregate updates from multiple devices to update the global sanitizer. With
federated learning, we run a salient model to generate the localization labels within the user’s device instead of
running it on Aragorn server. We provide an overview of the variants in Figure 13. Upon training, user devices
would be updated with the global sanitizer to operate in the steady-state workflow.
Training a multiclass sanitizer with federated learning In practice, using a multiclass object detector for the
sanitizer that has been trained to recognize multiple objects would have higher accuracy than multiple single class
object detectors as independent sanitizers, each of which have been trained to recognize a different object [53].
This is particularly true when dealing with similar looking objects. For example, a sanitizer that has only been
trained on credit card images may mistakenly recognize a driver’s license as a credit card, since it has not seen
driver’s licenses with a different class while training. With centralized learning, training a multiclass sanitizer
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while extending support to a new object would be trivial with access to training images (including those gathered
previously for other objects) at Aragorn server. This would allow retraining the model from scratch with the
appropriate number of objects. However, we cannot follow the same approach with federated learning since we
would not have access to training images. Previously trained models cannot be reused as is, since their output
layers would have fewer dimensions than the required number of dimensions for extension. We discuss the
following methods to train the sanitizer in a federated manner.
First, we could require all users, including those running apps in the steady-state workflow to contribute to

training by computing parameter updates on their respective objects of interest. This way, Aragorn server will
obtain model parameter updates for all objects, which it can aggregate to update the global model. This approach
would be the federated equivalent of retraining the sanitizer from scratch. However, this approach would impose
additional load on all user devices (in terms of running additional computations), including those devices that
are not running apps that seek extension to recognize a new object. One way to reduce the load would be to
fine-tune a previously trained sanitizer, where we replace the last layer with random weights of appropriate
dimensions. Fine-tuning (updating the parameters of only the last layer) this model would require fewer updates
for previous objects, and can be obtained from a smaller set of users.

Alternatively, we could use multiple single class sanitizers in case of federated learning. This would not increase
the load on all user devices, but could lead to less accurate predictions from the sanitizer, especially when objects
similar to the intended object of interest are present in the background. Despite this limitation, this approach
could still protect privacy in most cases since similar looking objects to the intended object of interest may not
be present in the user’s environment. Scans from the card scanning dataset did not have objects similar to credit
cards in the background.

Implementation The biggest bottleneck with Aragorn’s federated implementation is running ML inference
on a salient object detector within the user’s device. We run a public TensorFlow Lite version of U2-Net [76] as
the on-device salient object detector on a Google Pixel 7 phone. On average, the model takes upto 2 seconds for
inference on a single image on the CPU. The high latency contributed by this operation necessitates running
the federated variant in the background (regardless of the latency of computing gradient updates to the local
sanitizer) once the user has completed their interaction with the app to preserve user experience. Based on
existing research [24], we expect the sanitizer trained with federated learning to attain similar accuracy to that
attained with centralized learning.

A.2 Using a Salient Object Ddetector with Aragorn
The supervised sanitizer employed by Aragorn performs classification and localization with a single inference
unlike a salient object detector which only provides localization. Thus, a salient object detector like U2-Net has
to be complemented with a classifier in order to be employed by Aragorn. Results in §A.1 show that, on average,
U2-Net takes 2 seconds to run inference on a single image on the CPU of a Google Pixel 7 phone. In contrast, our
supervised sanitizer, on average takes 21 ms for inference on a single image on the CPU of the same phone. The
sanitizer also has a marginally higher localization accuracy (IOU) over U2-Net. On a subset of frames from 20
random scan videos in the card scanning dataset, the sanitizer has a localization accuracy of 81% while U2-Net
has a localization accuracy of 77%.

A.3 Are Fingerprints Present in the Sanitized Frames roduced by Aragorn?
We seek to understand if there is information contained in the sanitized images produced by Aragorn that can be
used to identify users. We answer this question by training a 19-class classifier and a background fingerprint
model on the sanitized frames produced by Aragorn on frames from Daredevil’s card scanning dataset. However,
we were neither able to train a background fingerprint model nor a classifier to fingerprint the sanitized images.
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Fig. 14. Training a classifier on sanitized frames to
identify users does improve the training accuracy. This
provides empirical evidence of a lack of fingerprintable
information in sanitized frames.

Fig. 15. Training the background fingerprint model on
sanitized frames to identify users does not improve the
training accuracy. This also provides empirical evidence
of a lack of fingerprintable information in sanitized
frames.

Both models are unable to even reliably make predictions on their respective training sets, with the background
fingerprint model attaining no more than 65% accuracy on its training set, and the classifier attaining no more than
40% on its training set. This inability of the classifier (a simpler model to train than the background fingerprint
model) to even learn the training data provides strong empirical evidence of lesser information being present in
the sanitized images that can be used for fingerprinting. Figure 14 and Figure 15 show the variation in training
accuracy of the 19-class classifier and the background fingerprint model respectively on the sanitized frames
with training iterations.

A.4 Users Attempting to Sharpen Blurred Images to Overcome the Preemptive Defense
As discussed in §5.3.4, the preemptive defense validates images gathered from users by showing them to other
users. In order to protect the privacy of the gathered images, we blur these images before showing them to other
users. Malicious users could attempt to sharpen the images shown to them in order to recover and leak any private
information contained in them. We ran experiments to sharpen the blurred images using image sharpening filters
as well as two different deep learning based conditional generative adversarial networks (GANs) [37, 41], but
were unable to recover any sharpen the images to recover any sensitive information from them. We show an
example of the sharpened images produced by these methods in Figure 16.

Fig. 16. The leftmost image is a blurred credit card image. The next three images show the result of sharpening this image
using a sharpening filter, DeblurGAN [41] and Pix2pix GAN [37] respectively. These results show that users would struggle
to recover sensitive information from the images shown to them as part of Aragorn’s preemptive defense.
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A.5 Scaling the Sanitizer to Support a Large Number of Objects
We observe that the classification and localization accuracies of object detectors such as YOLOv3 (which we use
for the sanitizer) decrease when they support more than 15 objects. While this could raise concerns over how
Aragorn can scale to support a large number of objects, such concerns can be easily addressed by employing
multiple sanitizers, each of which supports a different set of objects. Then, based on the established object of
interest, we can load the appropriate sanitizer to interface with the camera.

A.6 Security Analysis
In this section, we list ways in which apps could attempt to undermine Aragorn to invade privacy and how
Aragorn is robust to such attacks.

A.6.1 Apps requesting support for redundant or nonsensical objects. Apps could request Aragorn to extend support
to an object that is already supported in an attempt to run in the unprotected transient workflow. For example,
say Aragorn supports "Credit Card" as the object of interest. A malicious card scanning app that is aware of
this, could purposely request support for "Payment Card". Firstly, this would lead to the app operating in the
transient workflow where it can access complete camera frames from the app. Second, it would add a redundant
object to the list of objects supported by Aragorn that could potentially affect its ability to accurately localize to
the object. Similarly, a malicious app could also request support for some nonsensical object defined through
some gibberish. Aragornis robust against such attacks since requests for to extend the sanitizer to new objects go
through manual review for approval. Requests for redundant or nonsensical objects would thus be caught and
discarded in the review. The manual review also thwarts cases where the same app repeatedly requests support
for different objects to continually operate in the transient workflow.

A.6.2 Apps forcing users to grant access to complete camera frames. Aragorn also supports cases where users
there is no object of interest and users have to show complete camera frames (All Objects option in Figure 4).
Similar to some websites forcing users to disable ad blockers to access them, malicious camera apps could force
users to grant access to complete camera frames. However, users can instead choose honest variants of such apps
that provide the same utility which do not forcing users to do so.

A.7 Supporting Requests from Users for Extension to New Objects
Before Aragorn’s initial deployment (prior to any invocations to the transient workflow), we train the sanitizer
to detect common objects from public datasets to cover most objects that users could seek to scan that are not
associated with any particular app. In case multiple users request support for a previously unrecognized object,
Aragorn can support them as long as the object can either be associated with at least one camera app, or is
present in a public dataset. Currently, Aragorn cannot support user requests to support arbitrary objects that do
not map to either of these two options.

A.8 JPEG Compression vs Photo-response Nonuniformity (PRNU)
Aragorn uses JPEG compression to obscure inherent high-frequency camera fingerprints also known as photo-
response nonuniformity (PRNU). In this section, we evaluate the effectiveness of JPEG compression in obscuring
PRNU. We use a public implementation of the ABC protocol[15] that calculates the Peak-to-Correlation Energy
ratio (PCE) between two images to determine if the same PRNU can be detected from both images. A higher PCE
implies that the two images are likely to have the same PRNU, meaning that they were captured on the same
device.

Concretely, we used 6 devices (Samsung Galaxy S7, Samsung Galaxy Tab S7, Google Pixel 2, Google Pixel 3A,
Google Pixel 4 and Redmi Note 7) and picked 20 reference images from them. We then pick 100 candidate images
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Fig. 17. The 3 plots show PCE ratios for 100 candidate images at different levels of JPEG compression; red markers are ratios
from the same devices while blue markers are ratios across devices.

randomly chosen from these devices for comparison. A fingerprint can be successfully extracted if it is feasible to
draw a clear bound between the PCE values of the devices that are the same as the reference device, and those
that are different. As seen in Figure 17, that there is a clear separation between the PCE values when both the
reference images and the candidate images have not not gone through JPEG compression. However, for 75% and
50% JPEG compression, there is significantly more overlap between the PCE values for the candidate images,
indicating that JPEG compression is an effective technique at obscuring PRNU. We repeated the experiment by
considering JPEG compressed reference images and observed similar results.
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