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summary

Can TEEs enable secure scientific computing?

Slowdown
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AMD SEV shows little performance degradation
if used with interleaved NUMA allocation
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interleaved

Irregular workloads can still show virtualization-based overheads

Intel SGX is inappropriate for scientific computing
Incurs high performance overheads
Programming model requires application modifications
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Outline

Why Secure High Performance Computing Matters?

Performance Analysis of General-Purpose TEEs for HPC
What special configurations AMD SEV need?
Why Intel SGX is not an appropriate fit for HPC?

Future Trends in TEEs
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Secure High-Performance Computing

How to compute with large sensitive data?
Biomedical data
Proprietary data

Security threats in HPC centers
External
Internal

A usual tradeoff in HPC centers
Risk acceptance vs data hosting

Usability challenge of secure environments
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Motivation for this Work

Related Work
Cloud?! or General-Purpose? Computing Centric

No focus on HPC But 'Why?' m

Distinction between HPC and Cloud Computing V -
Resources allocated to a single user at a time * y
Highly multithreaded apps, batched together \,\é-ﬁ‘ -

Large working sets
Scale across many nodes
Perform limited types of I/0

Gjerdrum et al., Performance of Trusted Computing in Cloud Infrastructures with Intel SGX, CLOSER 2017. UCDAVIS

2 Mofrad et al., A comparison study of intel SGX and AMD memory encryption technology, HASP 2018.




What are Trusted Execution Environments (TEEs)?

Physical memory

Encrypted
data

Unsecured
data

Runtime
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TEE

——

Trusted Execution Environments provide
hardware-enforced isolation
cryptographic attestation to verify execution
no significant usability challenges
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How TEEs Fit in Our Threat Model?

Threat Model

NOt TrUSted Physical memory Zone of trust
E ted U d Data Open
HPC System Admin. provider data
Operating System el eV Nt
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HPC users sharing the resources TEE | Compute provider

Physical attacks and side-
channels not within scope
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What are the Performance Implications of
Current TEES?

SEV does not incur significant performance degradation

Default NUMA penalty can be high
Interleaved NUMA policy improves performance

Irregular workloads performance suffers due to virtualization
when running under SEV

SGX shows high performance overheads
Does not support unmodified applications
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We Analyze Two TEEs

[1] Trusted [1]

------------

Guest Operating System (VM)
Operating System Operating System

Technology TCB Size Secure Memory Size Application Changes
. e
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[1] Christian Gottel et al. "Security, performance and energy trade-offs of hardware-assisted memory protection mechanisms." IEEE Symposium on Reliable D:llstributed Systems (SRDS), 2018.




Workloads Evaluated

Traditional HPC Graph Workloads Modern HPC

GAP

oRoRe.

NAS Parallel Benchmarks GAPBS (US road network) LULESH, Kripke, Mobiliti, LightGBM, BLASTN
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Hardware Platforms Used
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Feature| AMD SEV1 | AMDSEV2 | AMD SEV 3 | Intel SGX
CPU EPYC 7401P | EPYC 7702 EPYC 7402P | Core 17-8700
Sockets| 1 2 1 1
Cores 24 128 24 6
NUMA | 4 Nodes 2 Nodes 1 Node 1 Node
RAM 64GB ITB 64GB 32GB
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Performance Impact of SEV for NPB (D) on AMD
Naples

AMD Naples (4 NUMA Nodes)
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Performance Impact of SEV for NPB (D) on AMD
Naples

AMD Naples (4 NUMA Nodes)
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Performance Impact of SEV for NPB (D) on AMD
Naples

AMD Naples (4 NUMA Nodes)
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Comparing it to AMD Rome

AMD Naples (4 NUMA Nodes)

3 - EEE Native-default W QEMU-default BN QEMU+SEV-default
c
3
S 27
5
» L
0 .
bt cg ep s lu mg sp ua gmean
AMD Rome (2 NUMA Nodes)
3
o | Nervedetault R QENUAetaUt | Slowdown Smaller for AMD Rome but still exists
22
©
=
o 11
(Vp]
0 .

T UCDAVIS

17




Memory Allocation on an AMD Naples System
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Memory Allocation on an AMD Naples System
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Why SEV requires locking pages to physical
addresses?

SEV encryption implementation makes

use of memory page's physical address - —
In on-chip guest key !
caches ¢ In DRAM
. . lain text encryption engine ipher text
Due to default NUMA policy of "first chehe block | |memory controller || _caehe block
touch" all memory gets allocated on a
S|ng|e nOde physical address tweak

Under-utilization of memory
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What about Interleaved NUMA Allocation?
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What about Interleaved NUMA Allocation?

When only QEMU is used

Equal memory (on-demand)
gets allocated on each node
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When QEMU+SEV is used

Equal memory gets allocated
on all nodes in the beginning
NUMA sensitive workloads
prefer this

UCDAVIS
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Performance Impact of SEV for NPB (D) on AMD
Naples

AMD Naples (4 NUMA Nodes)
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Performance Impact of SEV for NPB (D) on AMD
Naples

AMD Naples (4 NUMA Nodes)
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Finding 1

SEV can be used for secure scientific
computing without significant performance
degradation for most workloads if it is
configured correctly
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Performance Impact of SEV for GAPBS
and Other HPC Workloads
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Slowdown
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High thread contention

leads to high KVM exits \
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AMD Naples

Slowdown

Kripke LULESHLightGBM Mobiliti BLASTN
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Uses a 245GB database, much larger
than the memory size of the test
platform

AMD Naples /\
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Finding 2

In some cases SEV overhead is mainly
because of Vvirtualization, which is a
requirement of the SEV programming model
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Finding 3

SEV initialization is slow and depends on the
memory footprint of the VM
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Performance Impact of SGX

Slowdown

Large slowdown (upto--126x)
specially for graph workloads
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Enclave Page Cache (EPC) Faults

EPC Faults (PMI)
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Impact of Increasing Execution Threads
(under SGX)

Doesn't scale well because Scales normally under SGX
of high resident memory and has small resident mem
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Finding 4

SGX is inappropriate for unmodified HPC
workloads because of its limited secure
memory, poor thread scalability and its
unsuitable programming model for HPC
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Future Trends in TEES

Enhancements to SEV in the form of SEV-ES and SEV-SNP
Most TEEs seem to be following SEV like design

Intel has introduced

MKTME (multi key total memory encryption)
TDX (Trust Domain Extension)

ARM v9's Confidential Compute Architecture has introduced ARM Realms
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summary

Can TEEs enable secure scientific computing?

Slowdown
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AMD SEV shows little performance degradation
if used with interleaved NUMA allocation
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Irregular workloads can still show virtualization-based overheads

Intel SGX is inappropriate for scientific computing
Incurs high performance overheads
Programming model requires application modifications
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