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Ssummary

Working memory sizes growing
Heterogeneous memory devices needed to keep up

Current data movement strategies are limited
High overheads, inflexible, missing important optimizations

CachedArrays: Separate the mechanisms and policies
Simple interface for programmers
Flexible backend for framework developers

Prototype in software showing efficiency for DNNs
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Memory requirements are growing

BEQ

Not just deep learning

Graph analytics:
billions of vertices
trillions of edges

:

Working memory
Byte addressable
Low latency | Teomer
High bandwidth
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System architecture
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How to manage data movement?

Hardware caches

DRAM is a poor match
for cache metadata
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Requirements for efficient data movement

Transparent to the programmer (Mostly)
Hints are OK
Library (e.g., PyTorch) changes OK

Semantic information of data use to drive movement
Sage, vDNN, AutoTM, ZeRO-Offload, etc.

Important optimizations
1. Initial access data placement in fast memory
2. Elide dead data writebacks
3. Move data at right granularity
4. Avoid polluting fast memory
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CachedArrays API| for data movement

Exposes the following hints to the programmetr/library developer

Use object granularity. Not page, block, etc.

will use am going to read and/or write this object
will read am going to access object read-only
will_write [|am going to write the whole object
archive am not going to use this object for a while
retire am never going to access this object again
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Using the CachedArrays APl for CNNs
archive

Conv/Bias/
Activation

will read

FORWARD

N
(activations3
Ny

Y

Activations

Loss

Diff Source

retire BACKWARD

AWeight ABias

will write
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App/Runtime

High-level API
(Objects)

will use/r/w
archive
retire

Different data manager
for different hardware

Policy: Implements
high-level APl in
low-level DMI

Data manager:
Implements low-level
DMI and manages

Low-level DMI memory pools
(block/page/atom)

evict

mark_dirty

prefetch

Fast memory
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=xample of low-level DM

function prefetch(
policy, object, force::Bool = false)
X = DM.getprimary(object) <«

Policy . .
[ APPLICATION 1 AP i POLICY } if DM.in(X, SLOW) <
/ t sz = DM.sizeof(object)

K Dat Dat
Ac?ezs Manage;zntAPfiT y = DM.allocate(FAST, s5z) <«
if isnothing(y) && force
Y DATA MANAGER start = find region(policy)
: el DM.evictfrom(FAST, start, sz) do region
' Object - ? )
[ Object 1 } > {:Omet3J evict(policy, DM.parent(region))
\ - end
_______________ y = DM.allocate(FAST, sz)::Region
Devicel | /Tt Device 2 else if isnothing(y) && !force
g ‘ X return
Region1-1 J [Region} [ Region I Region 1 -2 J end
[ ¢-1 3-2 DM. copyto(y, X) <«
DM.1ink (X, V) <«

DM.setprimary(object, y) <«
end

return
end
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Whitley 2-socket System

—valuation platform

Optane and DRAM share bus
Optane DIMMs: >512GB
DRAM DIMMs: >64-128GB

PCle Gen4 PCle Gen4

Ice Lake-SP
(ICX)

Ice Lake-SP
(ICX)

Lewisburg R

DDR4 DIMMs
BN DDR4/Intel® Optane™ Persistent Memory

Implemented in Julia

Total memory per node:

3-41B O ptane Large Networks Small Networks
384-512GB DRAM Model Batchsize | Footprint Model Batchsize
(SRAM <64MB) DenseNet 264 | 1536 526 GB || DenseNet 264 | 504
ResNet 200 2048 529 GB ResNet 200 640
VGG 416 256 520 GB VGG 116 320

Compare to DRAM Cache (2LM)
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Results for DNNs

Three optimizations:
Memory freeing (M)
retire
Allow local-only data (L)
Prefetching (P)
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Benefits of retire (memory freeing)
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Reuse addresses = higher hit rates in DRAM cache

Memory reclaimed at lower cost
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Benefits of retire (memory freeing)

‘ — OLM: () = 2LM: M
[
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=
-
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Take away: Adding semantic information about

memory use improves efficiency

Memory reclaimed at lower cost
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Results for DNNs

Three optimizations:
Memory freeing (M)
retire
Allow local-only data (L)
Prefetching (P)
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Data placement and object-based movement
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Data placement and object-based movement

JIDRAM Read lDDRAM Writell D NVRAM Read BENVRAM Write

Placing data in fast/local &
memory reduces
movement

oved (T
s o 00
\

Take away: Smart data placement and movement ¢
reduces movement and increases efficiency ,

U
moxemen Improves = 0 )1 0.027 0.999 0.904| |0-277| ]0.283
efficiency E : 0.136

OLM: 0 2LM: M CA: 0 CA: L. CA: LM CA: LMP
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Results for DNNs 991

300 -

Three optimizations:

211 216
200 + 178 -

Memory freeing (M)
retire

Allow local-only data (L)
Prefetching (P)

100

Iteration Time (s)

Take away: Prefetching doesn’t always help.

Flexibility is required
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Results for DNNs

Three optimizations:
Memory freeing (M)
retire
Allow local-only data (L)
Prefetching (P)
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—uture work

Compute
E <press
Llnkm

Apply ideas to remote memory

CAL
mplement in PyTorch instead of Julia O PyTO 'C h

Hardware support and acceleration
e.g., DSA engine
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Conclusions

Memory systems are heterogeneous

Naively applying yesterday’s solutions doesn’t work

s N
APPLICATION API POLICY
\

A Data Data \

Hardware-software co-design is the future Management 4P1 |

" DATA MANAGER

Involving the program, not the programmer { }
Co-design data movement and placement 2 .....................
DeV|ce1 """"

Reglon
2-1

We can extend CachedArrays to other models

Hildebrand et al. Efficient Large Scale DLRM Implementation on
Heterogeneous Memory Systems. ISC 2023.
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All performance
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Data movement

HEDRAM Read lEDRAM Write /INVRAM Read lENVRAM Write
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Results for DLRM (sparse accesses)

DLRM: Deep learning A E
recommendation model T o
Very large embedding tables which P W ' =
are sparsely accessed ‘ ‘ ‘ -Z

dense features sparse features

Hildebrand et al. Efficient Large Scale DLRM Implementation on Heterogeneous
Memory Systems https://doi.org/10.1007/978-3-031-32041-5_3 COMPUTER SCIENCE



https://doi.org/10.1007/978-3-031-32041-5_3

Different data manager
for different hardware

Policy: Implements
high-level APl in

High-level API low-level DM

App/Runtime

(Objects)
will_use/r/w mplements lowdeve
ar‘ChlVe mDpMI and manages
retire Low-level DMI memory pools
(block/page/atom)
evict
mark _dirty
prefetch

Fast memory

Slow memory
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Results for DLRM (sparse accesses)

- [l Lookup [lUpdate : .
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(a) Uniform.

(b) Zipf (o = 1.0)

Hildebrand et al. Efficient Large Scale DLRM Implementation on Heterogeneous
Memory Systems https://doi.org/10.1007/978-3-031-32041-5_3
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https://doi.org/10.1007/978-3-031-32041-5_3

Conventional data movement

Why not just treat faster memory as a cache?
Caches have been great!
Block-level

Programmer transparent
Traditionally, low overhead

DRAM has some issues, though...




Ditfference between SRAM & DRAM

In SRAM caches: In DRAM caches:

Tag, LRU, etc. in different Off-chip
structure. High bandwidth Tag, LRU, etc. share bus with data
Lower bandwidth

Higher latency

HBM[)RAMDieI i

Memory HBMDRAM Die' ' '

controller TR YL

HBM DRAM DieI P

Logic Die

Data Macro
(256 KiB)

LRU Tag

https://fuse.wikichip.org/news/1177/amds-zen-cpu-complex-cache-and-smu/2/

COMPUTER SCIENCE



Results: Microbenchmarks on hardware

0O DRAM Readll I DRAM Write ] I NVRAM Read HENVRAM Write Bl Effective

; Each read requires 3

20 |- .

i dCCeSsSSeS

10 + -
=R | l |
Random Random Random  Random Sequential

64 B 128 B 256 B 512 B

Mean Bandwidth
(GB/s)

(a) Read-only benchmark, clean LLC read misses, 24 threads.

10

Each write requires 5

NSl HHHII il | HH“ HH" | accesses

Random  Random  Random  Random Sequential
64 B 128 B 256 B 512 B

Mean Bandwidth
(GB/s)

(b) Write-only benchmark, dirty LLC write misses, 24 threads, nontemporal
stores. Using 4 threads only increases the maximum write bandwidth by 1
GB/s.
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Problems with operating system paging

Many, many examples of “NUMA-style” data movement

Three problems
Data movement granularity is 4 KiB or 2 MiB pages
Timeliness of movement: Policy doesn’t have insight into dynamic access

Policy has no information on semantics of data use

OK for some workloads (e.g., cloud/VM)
Inefficient for many others
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