;;"'

‘Optl‘mlzmg Data Movement fbr
Heterogeneous Memory Sy stems

Mark Hildebrand, Jason Lowe-Power,
Venkatesh Akella

jlowepower@ucdavis.edu

I'C
DAVIS ARCHITECTURE RESEARCH COMPUTER SCIENCE

Ssummary

Working memory sizes growing
Heterogeneous memory devices needed to keep up

Current data movement strategies are limited
High overheads, inflexible, missing important optimizations

CachedArrays: Separate the mechanisms and policies
Simple interface for programmers
Flexible backend for framework developers

Prototype in software showing efficiency for DNNs

COMPUTER SCIENCE

Memory requirements are growing

BEQ

Not just deep learning

Graph analytics:
billions of vertices
trillions of edges

:

Working memory
Byte addressable
Low latency | Teomer
High bandwidth

Number of parameters

Ai2
ELM

.F."g-t-Jre T:-Exponéh.r.‘ai gfdvﬁh ofhﬂmberbfpmﬁnﬁetefs in DL models

COMPUTER SCIENCE

System architecture

= == ﬁ%f-—-— —
1 ’ ==

" —

Remote memory

3D XPoint §

memory

HBM DRAM Die ' ' ']
LN B0
HBM DRAM Die
THELL
HBM DRAM Die
R
HBM DRAM Die

Logic Die

High-bandwidth

memory

Traditional

DRAM

lll

COMPUTER SCIENCE

How to manage data movement?

Hardware caches

DRAM is a poor match
for cache metadata

5 v

HBM DRAM Die| b

FEE
A HBM DRAM Die

s S
BEEAET neMDRAMDIe' '

HBM DRAM Die.I i N U MA

State Logic Die P

Not timely

Pata Macro poor granularity

COMPUTER SCIENCE

Requirements for efficient data movement

Transparent to the programmer (Mostly)
Hints are OK
Library (e.g., PyTorch) changes OK

Semantic information of data use to drive movement
Sage, vDNN, AutoTM, ZeRO-Offload, etc.

Important optimizations
1. Initial access data placement in fast memory
2. Elide dead data writebacks
3. Move data at right granularity
4. Avoid polluting fast memory

COMPUTER SCIENCE

CachedArrays API| for data movement

Exposes the following hints to the programmetr/library developer

Use object granularity. Not page, block, etc.

will use am going to read and/or write this object
will read am going to access object read-only
will_write [|am going to write the whole object
archive am not going to use this object for a while
retire am never going to access this object again

COMPUTER SCIENCE

Using the CachedArrays APl for CNNs
archive

Conv/Bias/
Activation

will read

FORWARD

N
(activations3
Ny

Y

Activations

Loss

Diff Source

retire BACKWARD

AWeight ABias

will write

COMPUTER SCIENCE

App/Runtime

High-level API
(Objects)

will use/r/w
archive
retire

Different data manager
for different hardware

Policy: Implements
high-level APl in
low-level DMI

Data manager:
Implements low-level
DMI and manages

Low-level DMI memory pools
(block/page/atom)

evict

mark_dirty

prefetch

Fast memory

COMPUTER SCIENCE

=xample of low-level DM

function prefetch(
policy, object, force::Bool = false)
X = DM.getprimary(object) <«

Policy . .
[APPLICATION 1 AP i POLICY } if DM.in(X, SLOW) <
/ t sz = DM.sizeof(object)

K Dat Dat
Ac?ezs Manage;zntAPfiT y = DM.allocate(FAST, s5z) <«
if isnothing(y) && force
Y DATA MANAGER start = find region(policy)
: el DM.evictfrom(FAST, start, sz) do region
' Object - ?)
[Object 1 } > {:Omet3J evict(policy, DM.parent(region))
\ - end
_______________ y = DM.allocate(FAST, sz)::Region
Devicel | /Tt Device 2 else if isnothing(y) && !force
g ‘ X return
Region1-1 J [Region} [Region I Region 1 -2 J end
[¢-1 3-2 DM. copyto(y, X) <«
DM.1ink (X, V) <«

DM.setprimary(object, y) <«
end

return
end

COMPUTER SCIENCE

Whitley 2-socket System

—valuation platform

Optane and DRAM share bus
Optane DIMMs: >512GB
DRAM DIMMs: >64-128GB

PCle Gen4 PCle Gen4

Ice Lake-SP
(ICX)

Ice Lake-SP
(ICX)

Lewisburg R

DDR4 DIMMs
BN DDR4/Intel® Optane™ Persistent Memory

Implemented in Julia

Total memory per node:

3-41B O ptane Large Networks Small Networks
384-512GB DRAM Model Batchsize | Footprint Model Batchsize
(SRAM <64MB) DenseNet 264 | 1536 526 GB || DenseNet 264 | 504
ResNet 200 2048 529 GB ResNet 200 640
VGG 416 256 520 GB VGG 116 320

Compare to DRAM Cache (2LM)

COMPUTER SCIENCE

Results for DNNs

Three optimizations:
Memory freeing (M)
retire
Allow local-only data (L)
Prefetching (P)

300

200

100

Iteration Time (s)

| 291

211 216

178 N

Benefits of retire (memory freeing)

e QT M : () s 2L M: M

m |

T 1,000 |- -
=

#

- B .
> 500

@)

qa) 0 i | |

= 0 50 100 150 200 250 300

Iteration Runtime (s)

Reuse addresses = higher hit rates in DRAM cache

Memory reclaimed at lower cost

COMPUTER SCIENCE

Benefits of retire (memory freeing)

‘ — OLM: () = 2LM: M
[

Used (GB)
=
-
o

Take away: Adding semantic information about

memory use improves efficiency

Memory reclaimed at lower cost

COMPUTER SCIENCE

Results for DNNs

Three optimizations:
Memory freeing (M)
retire
Allow local-only data (L)
Prefetching (P)

300

200

100

Iteration Time (s)

| 291

211 216

178 N

Data placement and object-based movement

FammN

Placing data in fast/local &
memory reduces -
)
movement 2
=
a
=
A
S
ke
Using object-based g
movement improves =
efficiency B

UIDRAM Read lJDDRAM Write /INVRAM Read BENVRAM Write

S N o= O 00

Hﬂl

Hm.HHﬂ- Hﬂml Hﬂm_ Hﬂm-

0.3
0.2
0.1

2LM:) 2LM:M | CA:¢ CA:L CA:LM| CA:LMP
IDRAMIINVRAM | | 3
J 0.088 0.039 0.055
0.059
0.066]
0.027 0.277 0.283
0.229| |0.224

2LM: ()

2LM: M CA: 0 CA: L CA: LM CA: LMP

COMPUTER SCIENCE

Data placement and object-based movement

JIDRAM Read lDDRAM Writell D NVRAM Read BENVRAM Write

Placing data in fast/local &
memory reduces
movement

oved (T
s o 00
\

Take away: Smart data placement and movement ¢
reduces movement and increases efficiency ,

U
moxemen Improves = 0)1 0.027 0.999 0.904| |0-277|]0.283
efficiency E : 0.136

OLM: 0 2LM: M CA: 0 CA: L. CA: LM CA: LMP

COMPUTER SCIENCE

Results for DNNs 991

300 -

Three optimizations:

211 216
200 + 178 -

Memory freeing (M)
retire

Allow local-only data (L)
Prefetching (P)

100

Iteration Time (s)

Take away: Prefetching doesn’t always help.

Flexibility is required

COMPUTER SCIENCE i

Results for DNNs

Three optimizations:
Memory freeing (M)
retire
Allow local-only data (L)
Prefetching (P)

300

200

100

Iteration Time (s)

| 291

211 216

178 -

—uture work

Compute
E <press
Llnkm

Apply ideas to remote memory

CAL
mplement in PyTorch instead of Julia O PyTO 'C h

Hardware support and acceleration
e.g., DSA engine

COMPUTER SCIENCE

Conclusions

Memory systems are heterogeneous

Naively applying yesterday’s solutions doesn’t work

s N
APPLICATION API POLICY
\

A Data Data \

Hardware-software co-design is the future Management 4P1 |

" DATA MANAGER

Involving the program, not the programmer { }
Co-design data movement and placement 2
DeV|ce1 """"

Reglon
2-1

We can extend CachedArrays to other models

Hildebrand et al. Efficient Large Scale DLRM Implementation on
Heterogeneous Memory Systems. ISC 2023.

COMPUTER SCIENCE

All performance

=5 300| 21 oA
=7 178
5 g 200 171 131 143
£ 5100
0
OLM:) 2LM: M CA: 0 CA:L CA:LM CA:LMP
(a) DenseNet 264
22 100 = 264
= 22 244
= 2 900 ! 169 176
=B
0
2LM: (0 2LM: M CA: 0 CA: L CA: LM CA: LMP
(b) ResNet 200
. 500 450 468 427
= 9
= 8
0

2LM: () 2LM: M CA: () CA: L CA: LM CA: LMP
(¢) VGG 416

COMPUTER SCIENCE

Data movement

HEDRAM Read lEDRAM Write /INVRAM Read lENVRAM Write
65" |
S S - ~ -~ N
- 00 co o0 e %0 : =
E 6 Qo w oo !\3 (] E‘..{: et 5 cn -
) 4 = — oo o l\D = l—* .
22 H?ﬁ,ﬁ mg‘:’ |_“_‘f:: 8o Boo %‘j@:
s 2f % > 2 > & o & = &

2LM: 0 2LM: M CA: 0 CA: L CA: LM CA: LMP
(a) DenseNet 264

=)

g o =) g: %

; [t.% w - bo = bo g

= o o E o i Boo S oo

g = ﬂ > = N REE

g 0 [i e —
2LM: () 2LM: CA: @ CA: L CA: LM CA: LMP

(b) ResNet 200

=)

220 -

:]_-5 | E: - m m O«;\ g —

g wo o = on -~ - %

5 10 ; - i o 2 o .

s srlmzE WSS 6 5 WESE Hi 202

Z 0 ﬂlﬁ- =e ﬂﬂc' = A== o=
2LM: () 2LM: M CA: 0 CA: L CA: LM CA: LMP

(c) VGG 416 YUTER SCIENCE

Results for DLRM (sparse accesses)

DLRM: Deep learning A E
recommendation model T o
Very large embedding tables which P W ' =
are sparsely accessed ‘ ‘ ‘ -Z

dense features sparse features

Hildebrand et al. Efficient Large Scale DLRM Implementation on Heterogeneous
Memory Systems https://doi.org/10.1007/978-3-031-32041-5_3 COMPUTER SCIENCE

https://doi.org/10.1007/978-3-031-32041-5_3

Different data manager
for different hardware

Policy: Implements
high-level APl in

High-level API low-level DM

App/Runtime

(Objects)
will_use/r/w mplements lowdeve
ar‘ChlVe mDpMI and manages
retire Low-level DMI memory pools
(block/page/atom)
evict
mark _dirty
prefetch

Fast memory

Slow memory

COMPUTER SCIENCE

Results for DLRM (sparse accesses)

- [l Lookup [lUpdate : .
No Locality|gc.mouation With Locality
1,500
— 800 [73] [136
g 694 | | 220 : 600 |- | 131 L 60
= 1,000 171 = 337
: 59 133 7 . 240 | [163
= 233 | | © 447 | | 480 £ 400
= 500 = 548
o 200 416 | | 418 | | 418
532 | | 417 | | 422 |423
0
""MM CE CE CE MM CE CE CE
Simple Static Dynamic Simple Static Dynamic

(a) Uniform.

(b) Zipf (o = 1.0)

Hildebrand et al. Efficient Large Scale DLRM Implementation on Heterogeneous
Memory Systems https://doi.org/10.1007/978-3-031-32041-5_3

COMPUTER SCIENCE

https://doi.org/10.1007/978-3-031-32041-5_3

Conventional data movement

Why not just treat faster memory as a cache?
Caches have been great!
Block-level

Programmer transparent
Traditionally, low overhead

DRAM has some issues, though...

Ditfference between SRAM & DRAM

In SRAM caches: In DRAM caches:

Tag, LRU, etc. in different Off-chip
structure. High bandwidth Tag, LRU, etc. share bus with data
Lower bandwidth

Higher latency

HBM[)RAMDieI i

Memory HBMDRAM Die' ' '

controller TR YL

HBM DRAM DieI P

Logic Die

Data Macro
(256 KiB)

LRU Tag

https://fuse.wikichip.org/news/1177/amds-zen-cpu-complex-cache-and-smu/2/

COMPUTER SCIENCE

Results: Microbenchmarks on hardware

0O DRAM Readll I DRAM Write] I NVRAM Read HENVRAM Write Bl Effective

; Each read requires 3

20 |- .

i dCCeSsSSeS

10 + -
=R | l |
Random Random Random Random Sequential

64 B 128 B 256 B 512 B

Mean Bandwidth
(GB/s)

(a) Read-only benchmark, clean LLC read misses, 24 threads.

10

Each write requires 5

NSl HHHII il | HH“ HH" | accesses

Random Random Random Random Sequential
64 B 128 B 256 B 512 B

Mean Bandwidth
(GB/s)

(b) Write-only benchmark, dirty LLC write misses, 24 threads, nontemporal
stores. Using 4 threads only increases the maximum write bandwidth by 1
GB/s.

COMPUTER SCIENCE

Problems with operating system paging

Many, many examples of “NUMA-style” data movement

Three problems
Data movement granularity is 4 KiB or 2 MiB pages
Timeliness of movement: Policy doesn’t have insight into dynamic access

Policy has no information on semantics of data use

OK for some workloads (e.g., cloud/VM)
Inefficient for many others

COMPUTER SCIENCE

	Slide 1: CachedArrays Optimizing Data Movement for Heterogeneous Memory Systems
	Slide 2: Summary
	Slide 3: Memory requirements are growing
	Slide 4: System architecture
	Slide 5: How to manage data movement?
	Slide 6: Requirements for efficient data movement
	Slide 7: CachedArrays API for data movement
	Slide 8: Using the CachedArrays API for CNNs
	Slide 9
	Slide 10: Example of low-level DMI
	Slide 11: Evaluation platform
	Slide 12: Results for DNNs
	Slide 13: Benefits of retire (memory freeing)
	Slide 14: Benefits of retire (memory freeing)
	Slide 15: Results for DNNs
	Slide 16: Data placement and object-based movement
	Slide 17: Data placement and object-based movement
	Slide 18: Results for DNNs
	Slide 19: Results for DNNs
	Slide 20: Future work
	Slide 21: Conclusions
	Slide 22: All performance
	Slide 23: Data movement
	Slide 24: Results for DLRM (sparse accesses)
	Slide 25
	Slide 26: Results for DLRM (sparse accesses)
	Slide 27: Conventional data movement
	Slide 28: Difference between SRAM & DRAM
	Slide 29: Results: Microbenchmarks on hardware
	Slide 30: Problems with operating system paging

