
HTA: A Scalable High-Throughput Accelerator
for Irregular HPC Workloads?

Pouya Fotouhi1[0000−0002−5891−4003], Marjan Fariborz1[0000−0002−1896−1489],
Roberto Proietti1[0000−0001−6378−7005], Jason Lowe-Power1[0000−0002−8880−8703],
Venkatesh Akella1[0000−0003−3014−5326], and S. J. Ben Yoo1[0000−0002−7420−1871]

University of California Davis, Davis, CA 95616, USA
{pfotouhi, mfariborz, rproietti, jlowepower, akella, sbyoo}@ucdavis.edu

Abstract. We propose a new architecture called HTA for high through-
put irregular HPC applications with little data reuse. HTA reduces the
contention within the memory system with the help of a partitioned
memory controller that is amenable for 2.5D implementation using Sili-
con Photonics. In terms of scalability, HTA supports 4× higher number
of compute units compared to the state-of-the-art GPU systems. Our
simulation-based evaluation on a representative set of HPC benchmarks
shows that the proposed design reduces the queuing latency by 10% to
30%, and improves the variability in memory access latency by 10% to
60%. Our results show that the HTA improves the L1 miss penalty by
2.3× to 5× over GPUs. When compared to a multi-GPU system with
the same number of compute units, our simulation results show that the
HTA can provide up to 2× speedup.

1 Introduction

The advent of exponentially-growing data-intensive applications across several
domains has created a category of throughput-oriented workloads. This class
of irregular applications impose new challenges for computer architects as their
data sets are increasingly sparse and they exhibit poor locality in memory ac-
cesses. Unlike traditional compute-intensive applications, computing solutions
designed for irregular applications should focus on reducing the latency and
energy overheads of inevitable data movements.

The computing community has been utilizing GPUs as data-parallel accel-
erators given their massive throughput offerings. Though GPUs have proved to
be effective as high throughput accelerators for many regular applications, we
explore specializing data-parallel accelerators for efficient execution of irregu-
lar data-parallel workloads. These applications exhibit random memory access
patterns, essentially making any shared component an architectural bottleneck
limiting the obtainable throughput. Our main insight in designing HTA is to
reduce the contention within the memory system and reduce the energy and
performance cost of data movement.

? This work was supported in part by ARO award W911NF1910470.



2 P. Fotouhi et al.

On the scalability front, as we reach the end of transistor scaling, we cannot
simply rely on increasing the number of compute units on a single die to scale.
An alternative approach is to design processors utilizing multiple “chiplets” [13].
Chiplets assembled using advanced packaging technologies, such as multi-chip-
modules (MCMs), can offer a scalable design compared to one large monolithic
chip. However, the inter-chiplet communication and its energy efficiency are
known as the dominant factors towards performance and scalability due to signif-
icant power penalties brought by MCM designs [4]. We propose to address this
challenge by taking advantage of recent advances in 2.5D/3D packaging with
Silicon Photonics, which offers advantages of significantly lower energy per bit
and scalability to much larger interposers than what today’s reticle size limits
allow. For example, recently TSMC and Broadcom announced 1700 mm2 inter-
poser [36] which is twice the size of the maximum reticle size by proposing to
stitch together multiple interposers together.

In this paper, we present the design, evaluation, and 2.5D/3D packaging
solution of the high-throughput scalable accelerator architecture called HTA.
HTA’s memory architecture exploits a partitioned memory controller (PMC) and
all-to-all SiPh interconnects replacing conventional cross-bar based systems to
support nearly-contention-free, high-throughput, and scalable data movement
between the compute cores and the main memory. The partitioned memory
controller reduces the queuing latency by 10% to 30% which translate to 5%
to 26% reduction on overall memory access latency. In addition, addressing the
contention in the memory controller reduces the variations in access latency by
10% to 60% in terms of 95th percentile latency. Furthermore, HTA improves
the performance of the memory system and reduces L1 misses penalty by 2.3×
to 5×. Evaluating our design at scale shows 1.5× speedup on average for HTA
compared to a multi-GPU system for the same number of compute units.

The rest of the paper is organized as follows. Section2 presents challenges
towards scaling the memory system in the state-of-the-art data-parallel acceler-
ators. Section 2.1 describes the architecture of partitioned memory controller,
utilizing an interconnect fabric described in Section 2.2. Section 2.4 presents HTA
architecture which builds on top of the proposed memory system. Through sim-
ulations with the methodology described in Section 3, the performance of parti-
tioned controller and the proposed HTA architecture are evaluated in Section 4.
Section 5 presents he related work, followed by the conclusions in Section 6.

2 HTA - Background, Rationale, and Design

GPUs are the de facto choice for high throughput accelerators in the HPC do-
main. The left side of Figure 1 shows an overview of state-of-the-art GPUs. We
identify four key challenges to the architecture shown in Figure 1 when it comes
to scaling irregular applications.

1) Crossbar Radix: Increasing the number of core clusters requires increas-
ing the radix of the electrical crossbar between the cores and the L2 caches as
current systems implement a mostly uniform L2 architecture. In addition to the



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 3

Fig. 1: (left) Overview of baseline memory system where different core clusters
(CCs) share a crossbar, a single read/write queue per channel, and a last level
cache. (right) Proposed memory system addresses the contention by providing
dedicated queues for each core cluster to send memory request to every channel
through an all-to-all interconnect.

power and area overheads of the crossbar, it imposes a trade-off between latency
and bandwidth: to increase the bisection bandwidth there must be more layers
in the crossbar increasing both latency and area.

2) Overheads of Data Movement: Moving the data through multiple lev-
els of memory hierarchy adds to memory access latency and results in increased
energy consumption. This challenge becomes more important as physical dis-
tance between different levels increases in multi-chip module systems. In fact,
the performance and energy overheads of data movements are known to be the
main limiting factor towards scalability of multichip modules systems [4].

3) Bandwidth to Memory: Scaling the number of compute units in the
system increases the demand for bandwidth to memory. Already limited by the
latency-bandwidth trade-off due to the crossbar design, the number of avail-
able pins (between the compute dies and memory) add another constraint on
bandwidth, especially in chiplet-based designs.

4) Variability in Memory Latency: Memory requests from different pro-
cessing units share many deep queues including the crossbar, an L2 bank, the
memory controller queues, DRAM bus, and DRAM banks. The contention from
different compute units at these components increases the queuing delay which
leads to variations in access latency and adds to the complexity of the scheduling
for the memory controller and GPU cores.

Recent design trends from NVIDIA and AMD have taken steps to address
these challenges. These solutions are inspired by similar techniques used in CPUs,
and as a result, they do not address the underlying problem (i.e., contention)
especially as we go towards scaling these systems. For instance, on a single GPU,
NVIDIA’s Ampere architecture [26] increases the number of compute units by
50% (from 84 in Volta to 128 in Ampere). To maintain a reasonable radix for the
crossbar, the crossbar in is partitioned into two pieces. However, this approach
introduces non-uniform latency and bandwidth to the memory, increasing the
programming complexity on these systems. AMD’s RDNA architecture [1] re-
duces the radix of the crossbar by adding a L1 cache which filters requests from



4 P. Fotouhi et al.

all Compute Units (CUs) within a core cluster. While this approach simplifies
the crossbar design, and reduces the pressure on the globally shared L2 cache,
it adds to variability in memory access latency and only helps workloads which
have regular memory access patterns or temporal reuse. AMD’s CDNA archi-
tecture [2] eliminates the L1 cache along with the fixed-functions logic dedicated
for graphics application to free up area and power for adding more CUs. How-
ever, the crossbar (and subsequently the L2 cache) is divided into two slices to
achieve a reasonable radix for the state-of-the-art electrical interconnect tech-
nologies. Similar to NVIDIA’s design, this approach increases the programming
complexity by introducing non-uniformity in both latency and bandwidth, and
further increases the variability in memory access latency.

The main idea underlying our proposal for HTA is to eliminate the contention
in the memory subsystem as much as possible. We focus on three sources of
contention: the on-chip crossbar, the globally shared L2 cache, and the memory
controller queues. Our proposal makes the following contributions towards
addressing the sources of contention in data-parallel accelerators.
(a) To reduce the contention at the request queues, we partition the memory
controller into two parts: core-side controller with dedicated queues per core
cluster (CC), and memory-side controller in charge of scheduling and issuing
DRAM commands. This reduces the contention on read/write queues by offering
dedicated queues for each core cluster and reduces queuing latency by avoiding
the head-of-line blocking in scheduling. We will discuss the architecture and
scheduling of proposed memory controller in Section 2.1
(b) The contention at the crossconnect is reduced by providing direct point-to-
point links. However, implementing such a topology using electrical links would
be extremely challenging due to bandwidth, energy, and routing limitations. To
that end, and to reduce the overhead of data movements, we leverage an effi-
cient all-to-all passive optical fabric (called Arrayed Waveguide Grating Router
or AWGR) enabled by silicon photonics by taking advantage of 2.5D packag-
ing. Describing the key enabling technology for our architecture, the details of
proposed interconnect and packaging solutions are presented in Section 2.2 and
Section 2.3 respectively.
(c) We utilize the partitioned memory controller design, and propose HTA in
Section 2.4, which benefits from a scalable unified memory architecture and avoid
NUMA challenges.

2.1 Partitioned Memory Controller

In this section, we present the details of our proposed Partitioned Memory Con-
troller (PMC) which consists of two parts: the compute-side memory controller
(CMC) and the memory-side memory controller (MMC). For the discussions and
evaluations presented in this paper, we target HBM as the DRAM device, but
the core idea of our proposal is agnostic to DRAM micro-architecture and can
be applied to other DRAM technologies (e.g., GDDR, DDR, etc.) in a similar
fashion as we focus only on the memory controller design and require no changes
to DRAM core architecture (see Section 2.3 for details).



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 5

(a) Baseline Memory Controller (b) Partitioned Memory Controller

(c) Scheduling timeline for the baseline (d) Scheduling timeline for PMC

Fig. 2: Working example of PMC, showing how the head-of-line blocking is ad-
dressed compared to the baseline. The stalls are avoided by scheduling requests
from different core clusters, and is limited only to the conflicting requests within
a core cluster.

Figure 2b presents an overall view of the components within PMC. The
key idea is to eliminate the contention on request queues and improve bank
utilization by avoiding stalls due to bank conflicts between requests from different
core clusters. With dedicated set of queues per channel for each core cluster, the
variation in the memory access latency will be limited to unavoidable conflicting
patterns from a single core cluster.

While dedicated queues eliminate the contention, the memory controller still
needs to have a single scheduler per bank as point of reference for DRAM timings.
Thus, we partition the memory controller into two parts. We keep the front-end
(containing dedicated read/write queues) on the accelerator side, and move the
back-end (including scheduling logic, and command queues) to the memory side.

Our design requires an all-to-all interconnect between the front-end and the
back-end. Section 2.2 describes how a multi-wavelength routing device called
AWGR can be used to replace the long-latency electrical crossbar while offering
high-throughput contention-free communication.

Compute-side Memory Controller (CMC) As Figure 2b illustrates, we
keep read and write queues on the processor side, with dedicated read and write
queues for each channel. The idea is to limit the contention only to requests from
the CUs within a single core cluster, and not all core clusters within the system.
These queues are the result of breaking down the single shared read/write queue
in the baseline memory controller shown in Figure 2a into per core cluster queues.



6 P. Fotouhi et al.

Requests from L1 caches in each core cluster are routed to proper queues
according to the address mapping scheme, similar to how corresponding L2
banks are selected for each request in the baseline architecture. Each Compute-
side Memory Controller (CMC) has dedicated links to communicate with the
Memory-side Memory Controller (MMC) for a given channel.

Memory-side Memory Controller (MMC) Figure 2b shows two chan-
nels of our proposed memory controller, and connectivity between MMC and
read/write queues from different CMCs. The scheduler looks at requests from
all core clusters regardless of their queue occupancy. Therefore, the scheduler
can continue servicing memory requests even when one requester has several
conflicting requests issued within a short period of time—a common case in
high-throughput accelerators illustrated in Figure 2.

At each cycle, all CMCs send a copy of the request at the head of their queues.
Then, an MMC selects a request to serve, it broadcasts back the requester ID
(i.e., the winner) and the bank number to all CMCs. Thus, other requesters
with requests for the same bank at the head of their queues can wait until the
response is provided. Requests from different requesters (i.e., core clusters) are
serviced in a round-robin fashion with an FR-FCFS scheduling policy similar to
the baseline.

Figure 2 illustrates how the partitioned memory controller can address the
head-of-line blocking problem. One core cluster (CC0) is sending several conflict-
ing requests (going to the same bank) to the first channel (CH0). This results
in several stalls during the scheduling. However, these stalls can be avoided by
addressing non-conflicting requests from other CCs between the conflicting re-
quests. PMC achieves this by allowing the MMC to select from dedicated queues
for each channel within each CMC. Current systems use deep associative queues
to avoid these stalls by finding requests to different banks within the queue.
However, one CC can fill the queue with conflicting requests in a short period
of time. This leaves the scheduler with no other options to choose from, even
using the most sophisticated logic-intensive associative queues, and results in
unnecessary back pressure applied to the whole system.

We should note that the processor’s total queue size remains unchanged
for each core cluster. We are essentially breaking down a large shared queue
into n (i.e., number of channels) smaller dedicated queues. The overhead of
this is approach is limited to a small fraction to replicate the logic needed for
maintaining those queues. On the memory side, there will be a small overhead
for the added queues and we envision this logic to be implemented on the logic
layer in 3D staked memories.

2.2 Interconnect

To address the contention at the crossconnect, our design utilizes a point-to-point
connectivity between the core clusters and memory controllers. Besides address-
ing the contention, our proposed architecture requires an all-to-all connectivity



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 7

between CMCs and MMCs. This connectivity allows for our scheduling policy
to make local decisions at the MMC and updating CMCs through broadcasting.

As discuss earlier, designing a scalable high-throughput accelerator requires
addressing the cost of data movements. Disaggregating the monolithic chip into
multiple smaller chiplets allows for more input/output interfaces for each core
cluster. However, chiplet electrical interconnection suffers from high distance-
dependent signal loss and limited I/O bandwidth [5]. Therefore, interconnecting
many non-adjacent chiplets require multi-hop networks with repeaters, incurring
large latency and energy overheads. These challenges can be overcome by silicon
photonic technology: reducing latency with almost distance-independent commu-
nication energy and providing high pin bandwidth density through wavelength-
division multiplexing (WDM) [25]. In the following sections, we present a sum-
mary on the principle of operation for optical links used in our design, and discuss
the details about our proposed interconnect fabric and packaging solution.

Silicon Photonics Integrated optical interconnects, enabled by silicon photon-
ics, offer properties that can be exploited to address the performance and energy
overheads of data movements in high-throughput accelerators.

An external WDM laser (in form of an optical frequency comb source or indi-
vidual lasers) generates the optical signal at the required wavelengths, which are
then coupled from a fiber into on-chip waveguides. On-chip modulators encode
bits onto wavelengths (one modulator for each wavelength). Then, the modu-
lated wavelengths traverse the waveguides and are filtered out and converted
back into the electrical domain by on-chip photodetectors. In terms of latency,
electrical-to-optical (EO) and optical-to-electrical (OE) signal conversions are
done at one cycle and incur no additional latency to the transmission line.

Arrayed Waveguide Grating Router One interesting property of WDM
technology (aside from its bandwidth benefits), is that it allows connecting a
single node to multiple receiver nodes by leveraging wavelength-selective routing
devices. This method allows implementing an all-to-all network without a large
number of point-to-point ports.

Among different SiPh wavelength routing devices that have been demon-
strated [5], we utilize the Arrayed Waveguide Grating Router (AWGR) with a
footprint of ∼1mm2 [31] to provide contention-less point-to-point connectivity
between all chiplets. AWGR is a passive SiPh fabric which provides all-to-all
connectivity between any input and any output port. Several studies explored
AWGRs as a uniquely compact solution for all-to-all interconnection with lower
loss and crosstalk compared with other SiPh devices providing similar connec-
tivity [14, 17, 40]. The reader can refer to the following articles for what concerns
the physics, design principle, and scalability of AWGRs [41, 29, 15].

2.3 Packaging

Figure 3 presents an overview of the packaging approach we use in our design. We
adopt a previously proposed technique for intra-package communication [38, 9,



8 P. Fotouhi et al.

(a) Top-view. (b) Side view.

Fig. 3: Example of proposed packaging solution, where Compute and Memory
dies are optically-interconnected through an AWGR using SiPh transceivers with
transceiver-chiplets and Si bridges on an organic substrate.

14] which can be applied to our memory controller design. This approach consid-
ers developing dedicated SiPh transceiver chiplets connected to their respective
(compute or memory) dies.

The advantage of this design decision is that it can be leveraged to provide
support for off-the-shelf memory devices (e.g., HBM, GDDR, etc.) by choosing
the proper command scheduler in MMCs. By integrating the MMC and SiPh
TRx (on the memory side) on the same die, no extra logic is required on memory
dies, and MMCs can be designed to work with existing PHY interfaces - with
minimal distance for data movements on electrical wires.

The dedicated SiPh transceiver chiplets connected to their respective dies
on one side through Si bridges and to AWGR (the fabric providing all-to-all
connectivity) through polymer waveguides (PWGs). These polymer waveguides
are integrated on top of the organic package substrate and provide inter-chiplet
optical connectivity. The reader can refer to the work of Dangel et al. [11, 12] for
the details on the overall integration process for polymer waveguides.

Combining SiPh and Si bridges, our proposal utilizes each interconnection
technology where it is the most efficient: SiPh for long-distance cross-package
interconnect between chiplets and Si bridges for short-distance electrical inter-
connect between the TRXs and the memory controller.

SiPh manufacturing processes exploits well established CMOS processes, and
photonic integrated circuit design kits (PDKs) have seen significant growth in
the past ten years, resulting in cost-effective SiPh integration [39]. The reader
can refer to [14, 20] for more detailed cost analyses and roadmap.

2.4 HTA Architecture

We discussed the challenges in scaling the memory architecture for today’s high-
throughput accelerator and how our proposed memory architecture addresses
them. In this section we build on top of the proposed memory system, and
introduce a high-throughput accelerator (HTA) architecture which takes the



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 9

advantage of low-latency all-to-all optical fabric and allows elimination of the
shared last level cache.

Elimination of last-level caches provide significant advantages in terms of
dedicating more area for compute, reducing access latency, and improving pre-
dictability in memory access time. The photonic interconnect used in our pro-
posal provides us higher bandwidth at a lower energy per bit cost to make the
underlying design tradeoffs such as eliminating the last level caches feasible,
especially for irregular workloads with poor locality.

Implications on Core Architecture Memory accesses in GPUs takes hun-
dreds of cycles to be serviced, and this latency can drastically change during the
application execution as different compute units compete for receiving their data
through shared memory channels. GPU architects have addressed this issue by
increasing the number of contexts executed simultaneously on GPUs. However,
this design choice comes with several challenges:

Context Scheduler: Allowing execution of multiple contexts at the same
time requires dedicated logic to maintain, track, the state for each of them.
Moreover, based on the state of contexts, additional logic is required to perform
scheduling with proper arbitration and decoding units involved.

Physical Register Files: GPUs rely on large register files to store data
required for computation. Providing support for tens of contexts to be executed
simultaneously translates in larger register files, scaling almost linearly with the
number of contexts supported.

Both area and power dedicated to the operations discussed above are obsta-
cles towards achieving scalability for high-throughput accelerators. Our proposed
memory architecture mitigates these overheads by lowering the access latency
and improving the predictability in memory access. The evaluation of these op-
portunities for micro architectural improvements requires substantial work in
terms of modeling, and we leave them for the future work.

Scalability of HTA One of the main benefits of SiPh interconnects is their
distance-independent energy consumption and performance. Combining this with
the benefits of packaging solution discussed in Section 2.3 allows HTA to scale.

Considering the area saving from eliminating L2 cache (occupying ~50% of
chip area), a single package instance of HTA can support 4× more compute units.
Moreover, multiple packages can be utilized to scale further, and realize a scalable
high-throughput accelerator with a unified address space without considerable
energy and performance overheads.

The major component in HTA that needs to scale with the system is the
AWGR. In this paper, we study HTA with 64 and 256 CUs which can be re-
alized using 16 × 16 and 64 × 64 AWGR respectively. Scaling above 256 CUs
requires AWGR with more than 64 ports. While 512 × 512 AWGR has been
demonstrated [8], the main challenge for implementing AWGRs with high port
counts (i.e., >64) is the optical crosstalk. However, the new Thin-CLOS archi-
tecture successfully demonstrated by Proietti et al. [29] can utilize multiples of



10 P. Fotouhi et al.

smaller AWGRs (lower port count) in parallel to provide the same functionality
of a larger AWGR at lower crosstalk. While these solutions have larger foot-
prints, the area overhead might be negligible in large accelerators with more
than 256 CUs.

The bandwidth between any input-output pair in AWGR is limited to the
information that can be carried out by a single modulated wavelength. If the
bandwidth requirements exceed what a single wavelength offers, there are two
alternative options. The first one is to leverage multiple free spectral ranges
(FSRs) of an AWGR [16, 17], and virtually create a parallel channel of com-
munication. The second one is to use spatial-division multiplexing (SDM), i.e.,
integrating and transmitting data through parallel AWGRs (either planar or 3D-
stacked [32]). Multi-FSR strategy requires a broader laser spectrum and higher
laser power to compensate for higher crosstalk inside the AWGR and to guaran-
tee the required minimum optical power at the receiver. The SDM approach has
similar laser power requirements but does not need a broader laser spectrum.
However, it needs a larger die area or more SiPh layers, as well as more optical
IO pins.

3 Methodology

3.1 System Comparisons

To evaluate our proposed HTA architecture, we compare it against a system sim-
ilar to AMD’s RDNA architecture with details of the memory hierarchy shown
in Figure 1. CUs within a core cluster have private caches (“L0”) and share
the L1 cache, which centralizes all caching functions within each cluster [1]. L1
caches are connected to a globally shared L2 cache through a long-latency cross-
bar interconnect, resulting in ~100 cycles hit latency for L2 [21]. Therefore, for
our simulations, we modelled the electrical crossbar with a latency of 50 cycles
in each direction.

Within the memory controller of a given channel, all requests from different
CUs share a read and a write queue. In each cycle, the scheduler performs an
associative search and issues commands for requests in a First-Ready First-
Come-First-Served (FR-FCFS [30]) fashion. For our evaluations, we refer to this
design as the baseline memory controller. While we use AMD’s RDNA memory
hierarchy as our baseline, the challenges in scaling the memory hierarchy of
GPUs are common in NVIDIA’s systems and our proposal can be applied there
similarly.

One example of HTA can host 64 CUs by utilizing a 16 × 16 AWGR to
interconnect eight compute chiplets (each with four CUs) to four stacks of
HBM2 memory. SiPh links use WDM with 16 wavelengths and perform mod-
ulation/demodulation at 32Gbps. On the compute side, each compute chiplet
uses one SiPh WDM TRX with 64GB/s bandwidth in each direction, making a
total of 16 SiPh TRXs for CMCs. On the memory side, four SiPh WDM TRXs
can match the 256GB/s bandwidth of a single stack of HBM2 which results in
a total of 16 SiPh TRXs for MMCs.



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 11

Table 1: Simulation Parameters

Compute Cluster

Number of CUs 64 CUs per CC 4

Memory Hierarchy

L0 V$ 16kB (per CU) L0 I$ 32kB (per CC)
L0 K$ 16kB (per CC) L1 $ 64kB (per CC)
L2 $ 2MB (8 banks) DRAM 4GB HBM2 [22]

3.2 Simulations

Performance To model our target systems we use MGPUSim [34] which mod-
els the Graphics Core Next 3 (GCN3) ISA. We extended the simulator to model
a three level cache hierarchy. We integrated the timing model from DRAM-
Sim3 [22] after extending it to model our proposed partitioned memory con-
troller design discussed in Section 2. We utilize MGPUSim for collecting the
traces on the memory system, and piped those traces on detailed timing model
on DRAMSim.

For the performance of the interconnect technologies used in this paper, we
used latency reporting in the previous work [21, 14]. The details of the modeled
system in the simulator for different components are listed in Table 1. It should
be noted that the trace-based evaluation approach limits our reporting to the
performance of the memory system, and does not allow us to obtain execution
times for the two systems under comparison. However, since a significant portion
of the pipeline stalls are due to memory accesses, the performance of the memory
system would be a reasonable candidate for our evaluation. To this end, we will
look at the penalty of L1 misses when comparing the baseline with PMC in
Section 4.

For evaluating our proposal we used benchmarks from AMD’s Accelerated
Parallel Processing (APP) Software Development Kit (SDK), Hetero-Mark suite
[33], and Scalable Heterogeneous Computing (SHOC) suite [10].

Among those supported by MGPUSim, we chose different benchmarks with
different memory behaviours to evaluate our proposal under different scenarios.
Breadth-first Search bfs and Page Rank pr represent applications with irregular
memory access patterns (i.e., poor locality). AES-256 Encryption (aes), Fast
Fourier Transform (fft), and FIR Filter (fir) represent typical compute intense
HPC applications with considerable amount of data reuse (i.e., medium locality).
Simple Convolution (conv) implementation used for this work divides the image
into sub-images to maximize data reuse (i.e., high locality).

4 Evaluation

In this section, we present the evaluation results on three aspects of our proposal.



12 P. Fotouhi et al.

First, we look at the performance of the proposed memory controller design
compared to the baseline memory controller discussed in Section 2. This anal-
ysis is done under the same cache hierarchy. In these experiments, we look at
the average DRAM access latency in both designs, as well as 95th percentile
latency as a measure of divergence in the access latency. Second, we evaluate
HTA design against the baseline GPU architecture. In this set of analyses, we
evaluate our memory controller design combined with a new cache hierarchy,
and model a system like the one shown on right in Figure 1. We report the
average miss penalty for L1 caches in the form of Average Memory Access Time
(AMAT) for L1 misses. Third, we evaluate our proposal at scale by comparing
the performance of HTA with 256 CUs against a multi-GPU system with 4×
64CU GPUs.

4.1 Evaluation of Partitioned Memory Controller

As our first step in evaluating our proposed architecture, we compare the perfor-
mance of the partitioned memory controller against the baseline memory con-
troller, both using the same cache organization. To emphasize on the importance
of the enabling technology used in our design, an implementation of PMC using
electrical links (PMC-E) is evaluated.

PMC design reduces access latency divergence by avoiding head-of-line block-
ing in scheduling. In the baseline design where all requesters share a single queue,
if one requester sends a stream of requests over a short window (a common case
in data-parallel accelerators), requests from other requesters are blocked until
DRAM manages to return pending requests. PMC avoids this by having ded-
icated queues for each requester and directly applies the back-pressure to the
original requester and not the whole system. Figure 4b shows the 95th percentile
in access latency, indicating a significant reduction in memory latency variation
for PMC over the baseline memory controller. Depending on the access pattern
in each workload, the 95th percentile in access latency is improved by 10% to
60%. The benefits gained through scheduling are strong enough to result in im-
proved tail latency even for the electrical implementation of the PMC which
suffers from high-latency links.

Besides improving the predictability in access latency, PMC improves the
access latency by increasing parallelism in bank accesses within the DRAM. Fig-
ure 4a depicts the average memory latency for the baseline memory controller
and the proposed PMC. PMC achieves a lower average access latency by avoiding
a portion of bank conflicts in the memory requests. If one requester sends several
conflicting requests, those would limit bank activations in the baseline design,
while in PMC, the scheduler can schedule requests from other requesters. There-
fore, the queuing portion of memory access is reduced by 10% to 30% depending
on the access pattern exhibited by each workload.

Both PMC-E and PMC take advantage of the scheduling scheme offered by
PMC and avoid head-of-line blocking which translates to improvements in tail
latency. This is purely due to the scheduling scheme in PMC, and it is indepen-
dent of the technology used to implement the point-to-point fabric. However, as



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 13

(a) Average DRAM access latency

(b) 95th percentile latency for DRAM access

Fig. 4: DRAM performance for the baseline memory controller (Base) compared
to a system utilizing Partitioned Memory Controller with implemented with
electrical and SiPh links (PMC-E and PMC, respectively). (a) In terms of access
latency, PMC improves the queuing latency by 10% to 30% resulting in 5%
to 26% reduction on overall access latency compared to the baseline memory
controller. (b) The 95th percentile latency for DRAM access is improved by 10%
to 60% by reducing contention at read and write queues within the memory
controller.

described in Section 2.1, the PMC design makes the crossbar latency part of the
memory access. Therefore, the latency overhead imposed by the interconnect
used in PMC is a critical part of this design. While the PMC design improves
the average access latency by 10%-30% (i.e., 5-20ns), these improvements can
be masked when using a long-latency crossbar (e.g., 50ns). As illustrated in
Figure 4b, the implementation of PMC using electrical links (PMC-E) improves
the tail latency. However, as shown in Figure 4a, the average access latency is
significantly increased as the result of long-latency electrical links used in this
design. This analysis shows the importance of interconnect technology used for
our proposal, making SiPh and AWGR the key enablers for this design.

4.2 Evaluation of HTA

As the next step, we investigate the performance of proposed HTA system which
allows for elimination of the last level cache against the baseline GPU described
in Section 3, along with a GPU with 40MB of last level cache. In order to
analyse different architectural differences between HTA and the baseline, we
present evaluate two middle point between the two systems. First, we modeled
a system similar to the baseline which utilizes the PMC under the same cache



14 P. Fotouhi et al.

Fig. 5: Average Memory Access Time (AMAT) for L1 misses. The baseline
(GPU) is compared to a GPU with 40MB of last level cache (GPU-LC), a similar
system using PMC (HTA-L2), an implementation of HTA using electrocal links
(HTA-E), and ultimately the proposed HTA. HTA improves the average L1 miss
penalty by 2.3× to 5× compared to the baseline GPU architecture by avoiding
data transfers over a high-latency crossbar.

organization (labeled HTA-L2). Moreover, we modeled HTA implemented using
electrical interconnects to separate the architectural changes from the benefits
gained purely from SiPh technology (labeled HTA-E).

As we discussed earlier in Section 3, our trace-based evaluation does not allow
us to report runtime numbers. Thus, we choose to report the overall performance
of the memory system. Figure 5 presents the L1 miss penalty, as a measure of
performance of the memory system for both architectures under investigation.
Average miss penalty for L1 caches is calculated in the form of AMAT for L1
misses.

As the third bar (HTA-L2) in Figure 5 shows, DRAM access latency im-
provements gained from PMC result in 10-15% reduction in L1 miss penalty.
However, the latency-intensive (50 cycles) consult with the last level cache is
hiding most of the benefits achieved. With L2 caches eliminated in HTA, all L1
misses are directly added to the CMCs, where requests are transferred over the
all-to-all fabric to the MMCs.

Even the HTA system using electrical links (with 50 cycles of latency between
CMCs and MMCs) significantly reduces the L1 miss penalty. Taking advantage
of low-latency (3 cycles) interconnect fabric enabled by SiPh, HTA reduces the
latency cost of L1 misses by 2.3x to 5x.

Reductions on the average miss penalty for L1 caches are mostly obtained
through improvements on the 95th percentile in access latency, emphasizing the
importance of variations in memory access latency in the overall performance of
the memory system for high-throughput accelerators.

The second bar (GPU-LC) represents a GPU with a large (i.e., 40MB) last-
level cache, similar to the architectural approach taken by NVIDIA [26], lowering
the AMAT by reducing the traffic to DRAM. This approach benefits workloads
with high locality. However, as can be seen in Figure 5, it will only achieve a
small fraction of improvements offered by HTA for irregular HPC workloads with
sparse data accesses.



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 15

Fig. 6: The speedup of HTA with 256 CUs compared to a multi-GPU system
with 4 GPUs each with 64 CUs. The overhead of data movements in multi-GPU
setup result in a speedup of up to 2× for HTA.

4.3 Comparison with Multi-GPU systems

A key motivation for our HTA design is to achieve scalability. Utilizing a 64×64
AWGR, HTA can deliver an accelerator with 256 CUs. The state-of-the-art GPU
systems can achieve this scale only by combining multiple GPUs.

For the last part in evaluating HTA, we compared its performance against
a multi-GPU system with the same number of compute units (256 CUs). It
should be noted that not all the benchmarks provided support for multi-GPU
execution, and we only had a few options to run this experiment. Also, we should
note that the speedups reported in Figure 6 are mainly a lower-bound for what
the HTA can achieve. As of today, MGPUSim lacks a memory controller with
timing details, and DRAM responses are satisfied at a flat latency. That is the
main limiting factor for us to evaluate PMC in terms of execution time. However,
to show the potential benefits of a scalable system enabled by HTA, we modeled
a system with the average DRAM access latency measured in DRAMSim for
the baseline controller and PMC. This approach does not take into account the
benefits of lower variations in memory access achieved by PMC, and does not
reveal the full performance potential of HTA.

According to the evaluation results shown in Figure 6, HTA can achieve
1.5× speedup on average compared to a multi-GPU system. This improvement is
mainly achieved in HTA by avoiding the cross-GPU communication and schedul-
ing overheads in a multi-GPU system.

One interesting observation here is the overhead of a multi-GPU system for
different workloads. As can be seen in Figure 6, applications like aes or conv with
smaller data sharing between their kernels experience less overhead (~10%) in
the multi-GPU system. On the other hand, applications with more inter-kernel
data dependencies such as Page Rank (pr), fft, and Floyd Warshal (fw) require
more data movements between kernels (running on different GPUs), and result
in larger slowdowns (up to 2×) in a multi-GPU setup. These variations depend
on both architecture and workload, and impose several barriers in utilizing multi-
GPU systems. HTA allows the programmers to migrate their applications to a
scalable platform, and avoids considerable performance overheads especially for
applications with significant data sharing across different compute units.



16 P. Fotouhi et al.

5 Related Work

Several studies have looked at the scalability of GPUs. Vijayaraghavan et al.
illustrated the roadmap for exascale computing, and suggested aggressive use
of chiplet technologies and die-stacking to meet a scalable system design [37].
MCM-GPU [3] argues that GPU scalability can be achieved by partitioning the
GPU dies into GPU modules and reducing the cross GPU traffic. Pal et al. took
a different approach, and looked at the design space of wafer-scale GPUs [28],
where pre-manufactured GPU dies are directly bonded on to a silicon wafer
which includes the interconnection fabric on it. Arunkumar et al. [4] created a
framework for quantifying the scaling efficiency in terms of both performance
and energy which, based on their analysis, lack of inter GPU module bandwidth
increases the GPU idle time which increases the energy consumption in the sys-
tem. As Arunkumar et al. pointed out, the performance and energy overheads of
data movements are the main limiting factor towards scalability in GPUs. Many
researchers looked at this problem from different viewpoints. Milic et al. [24] pro-
posed a NUMA-aware multi-socket GPU architecture that reduces the traffic on
the interconnects. They minimized the NUMA effects by dynamically optimizing
the interconnect and the cache management policy in each phase of the appli-
cation. In MGPUSIM [34] a new memory management policy is introduced in
multi-GPU systems which can improve the data placement dynamically with the
goal of reducing inter-node communications. We believe that the performance
and energy overheads of data movements in GPUs should fundamentally be ad-
dressed. Considering how the memory system is designed for the state-of-the-art
accelerators, this goal can only be achieved through co-designing the memory
system and interconnect fabric. Another limiting factors in high-throughput ac-
celerators is the memory access latency, both in terms of the absolute value
and its variations. Lowering the memory access latency would decrease the idle
time, improving performance and energy efficiency. Chatterjee et al. improved
the performance of the memory systems in GPUs by proposing a new memory
controller that can reduce the DRAM latency divergence within the warps [7].
Bojnordi et al. proposed a programmable memory controller along with added
instructions to the ISA to improve request scheduling and bank utilization on
DDR memories [6]. Hashemi et al. aimed to reduce the pressure on the memory
system and proposed adding more logic to the memory controller to execute
cache inefficient instructions near DRAM by dynamically identify such instruc-
tions at the processor [18]. Liu et al. improved the memory access mapping by
using the window-based entropy mapping [23]. This technique reduces the vir-
tual to physical address mapping overhead by quantifying the entropy of each
address bit across all memory requests. Hussain et al. looked at the access pat-
tern within irregular memory access, and reduced the DRAM latency by caching
different patterns and scheduling memory accesses accordingly [19]. Oh et al. [27]
improved the bandwidth utilization in HBM by load balancing across all chan-
nels, and decreased the stall time by effectively increasing the request queue.
Tian et al. proposed an adaptive technique for bypassing caches [35] which can
improve performance and energy efficiency in GPUs, especially for workloads



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 17

with poor cache utilization. We found all of the aforementioned related work on
the memory controller design applicable to our design, providing several valuable
pointers for the future directions.

6 Conclusion

In this paper, we proposed a novel partitioned memory controller (PMC) to
reduce the contention in memory system of high-throughput accelerators. Uti-
lizing the PMC design along with a scalable all-to-all optical fabric, we proposed
a new high-throughput accelerator. Our simulation results show improvements
for PMC on DRAM access latency and memory access divergence, and reduced
miss penalty in L1 caches. Our chiplet-based design combines our novel PMC
design and SiPh technology to support 4× more compute units.

Given the lack of publicly available area/power models of state-of-the-art
GPUs, it is difficult to do a fair and accurate comparison of HTA with GPUs
in terms of power and area. However, we can present a qualitative analysis.
In terms of power consumption, SiPh links used in this work require 1.65-0.66
pJ/bit depending on the technology node used ranging from 65nm to 14nm. In
terms of area overheads, PMC design does not add any logic for queuing as ded-
icated queues are result of breaking down the single shared queue in the baseline
controller. Moreover, the SiPh components used in our design (the AWGR, and
SiPh TRXs) have small footprints compared to size of the processor dies (less
than 0.01% for typical compute dies [15]).

In this work we have assumed that the compute units in the HTA are sim-
ilar to that of a GPU. However the proposed HTA architecture can apply to
many different types of processors and accelerators. The combination of the sig-
nificantly lower memory latency and more deterministic memory access time
enables unexplored areas for micro-architecture design of advanced computing
units and accelerators. This will form our future work.

References

1. AMD: Introducing rdna architecture. https://www.amd.com/system/files/documents/rdna-
whitepaper.pdf (2019), [Online; accessed 12-10-2020]

2. AMD: Introducing amd cdna architecture. https://www.amd.com/system/files/documents/amd-
cdna-whitepaper.pdf (2020), [Online; accessed 12-12-2020]

3. Arunkumar, A., et al.: Mcm-gpu: Multi-chip-module gpus for continued perfor-
mance scalability. ACM SIGARCH Computer Architecture News 45(2), 320–332
(2017)

4. Arunkumar, A., et al.: Understanding the future of energy efficiency in multi-
module gpus. In: 2019 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). pp. 519–532. IEEE (2019)

5. Bergman, K., et al.: Photonic network-on-chip design. Springer (2014)
6. Bojnordi, M.N., Ipek, E.: Pardis: A programmable memory controller for the ddrx

interfacing standards. In: 2012 39th Annual International Symposium on Computer
Architecture (ISCA). pp. 13–24 (2012)



18 P. Fotouhi et al.

7. Chatterjee, N., et al.: Managing dram latency divergence in irregular gpgpu ap-
plications. In: SC’14: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 128–139. IEEE (2014)

8. Cheung, S., et al.: Ultra-compact silicon photonic 512× 512 25 ghz arrayed waveg-
uide grating router. IEEE Journal of Selected Topics in Quantum Electronics 20(4),
310–316 (2013)

9. Cutress, I.: Intel launches stratix-10-tx leveraging emib with 58g transceivers.
https://www.anandtech.com/show/12477/intel-launches-stratix-10-tx-leveraging-
emib-with-58g-transceivers-, [Online; accessed 11-28-2020]

10. Danalis, A., et al.: The scalable heterogeneous computing (shoc) benchmark suite.
In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graph-
ics Processing Units. pp. 63–74 (2010)

11. Dangel, R., et al.: Polymer waveguides for electro-optical integration in data centers
and high-performance computers. Optics express 23(4), 4736–4750 (2015)

12. Dangel, R., et al.: Polymer waveguides enabling scalable low-loss adiabatic opti-
cal coupling for silicon photonics. IEEE Journal of Selected Topics in Quantum
Electronics 24(4), 1–11 (2018)

13. Das, S.: It’s time for disaggregated silicon! https://www.netronome.com/blog/its-
time-disaggregated-silicon/ (2018), [Online; accessed 11-28-2020]

14. Fotouhi, P., et al.: Enabling scalable chiplet-based uniform memory architectures
with silicon photonics. In: Proceedings of the International Symposium on Memory
Systems. pp. 222–334 (2019)

15. Fotouhi, P., et al.: Enabling scalable disintegrated computing systems with awgr-
based 2.5 d interconnection networks. IEEE/OSA Journal of Optical Communica-
tions and Networking 11(7), 333–346 (2019)

16. Grani, P., et al.: Bit-parallel all-to-all and flexible awgr-based optical intercon-
nects. In: Optical Fiber Communication Conference. pp. M3K–4. Optical Society
of America (2017)

17. Grani, P., et al.: Design and evaluation of awgr-based photonic noc architectures for
2.5 d integrated high performance computing systems. In: 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). pp. 289–300.
IEEE (2017)

18. Hashemi, M., et al.: Accelerating dependent cache misses with an enhanced mem-
ory controller. In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). pp. 444–455 (2016)

19. Hussain, T., et al.: Advanced pattern based memory controller for fpga based hpc
applications. In: 2014 International Conference on High Performance Computing
Simulation (HPCS). pp. 287–294 (2014)

20. Jeppix: Cost roadmap. https://www.jeppix.eu/wp-
content/uploads/2020/04/JePPIXRoadmap2012.pdf, [Online; accessed 11-28-
2020]

21. Jia, Z., et al.: Dissecting the nvidia volta gpu architecture via microbenchmarking.
arXiv preprint arXiv:1804.06826 (2018)

22. Li, S., et al.: Dramsim3: a cycle-accurate, thermal-capable dram simulator. IEEE
Computer Architecture Letters (2020)

23. Liu, Y., et al.: Get out of the valley: power-efficient address mapping for gpus. In:
2018 ACM/IEEE 45th Annual International Symposium on Computer Architec-
ture (ISCA). pp. 166–179. IEEE (2018)

24. Milic, U., et al.: Beyond the socket: Numa-aware gpus. In: Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture. pp. 123–135
(2017)



HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads 19

25. Miller, D.A.: Device requirements for optical interconnects to silicon chips. Pro-
ceedings of the IEEE 97(7), 1166–1185 (2009)

26. NVIDIA: A100 tensor core gpu architecture.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-
ampere-architecture-whitepaper.pdf, [Online; accessed 11-31-2020]

27. Oh, B., et al.: A load balancing technique for memory channels. In: Proceedings
of the International Symposium on Memory Systems. pp. 55–66 (2018)

28. Pal, S., et al.: Architecting waferscale processors - a gpu case study. In: 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
pp. 250–263 (2019)

29. Proietti, R., et al.: Experimental demonstration of a 64-port wavelength routing
thin-clos system for data center switching architectures. Journal of Optical Com-
munications and Networking 10(7), B49–B57 (2018)

30. Rixner, S., et al.: Memory access scheduling. ACM SIGARCH Computer Archi-
tecture News 28(2), 128–138 (2000)

31. Shang, K., et al.: Low-loss compact silicon nitride arrayed waveguide gratings for
photonic integrated circuits. IEEE Photonics Journal 9(5), 1–5 (2017)

32. Su, T., et al.: Interferometric imaging using si 3 n 4 photonic integrated circuits
for a spider imager. Optics express 26(10), 12801–12812 (2018)

33. Sun, Y., et al.: Hetero-mark, a benchmark suite for cpu-gpu collaborative com-
puting. In: 2016 IEEE International Symposium on Workload Characterization
(IISWC). pp. 1–10. IEEE (2016)

34. Sun, Y., et al.: Mgpusim: enabling multi-gpu performance modeling and optimiza-
tion. In: Proceedings of the 46th International Symposium on Computer Architec-
ture. pp. 197–209 (2019)

35. Tian, Y., et al.: Adaptive gpu cache bypassing. In: Proceedings of the 8th Workshop
on General Purpose Processing using GPUS. pp. 25–35 (2015)

36. TSMC: Enhancing the cowos platform. https://pr.tsmc.com/english/news/2026
(2020), [Online; accessed 12-14-2020]

37. Vijayaraghavan, T., et al.: Design and analysis of an apu for exascale computing. In:
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). pp. 85–96 (2017)

38. Wade, M., et al.: Teraphy: A chiplet technology for low-power, high-bandwidth
in-package optical i/o. IEEE Micro 40(2), 63–71 (2020)

39. Wang, J., Long, Y.: On-chip silicon photonic signaling and processing: a review.
Science Bulletin (2018)

40. Werner, S., et al.: Towards energy-efficient high-throughput photonic nocs for 2.5
d integrated systems: A case for awgrs. In: 2018 Twelfth IEEE/ACM International
Symposium on Networks-on-Chip (NOCS). pp. 1–8. IEEE (2018)

41. Zhang, Y., et al.: Foundry-enabled scalable all-to-all optical interconnects using sil-
icon nitride arrayed waveguide router interposers and silicon photonic transceivers.
IEEE Journal of Selected Topics in Quantum Electronics 25(5), 1–9 (2019)


