
Efficient Large Scale DLRM Implementation on
Heterogeneous Memory Systems

Mark Hildebrand∗[0000−0001−6105−1643], Jason Lowe-Power[0000−0002−8880−8703],
and Venkatesh Akella[0000−0003−3014−5326]

University of California, Davis
{mhildebrand, jlowepower, akella}@ucdavis.edu

Abstract. We propose a new data structure called CachedEmbeddings
for training large scale deep learning recommendation models (DLRM)
efficiently on heterogeneous (DRAM + non-volatile) memory platforms.
CachedEmbeddings implements an implicit software-managed cache and
data movement optimization that is integrated with the Julia program-
ming framework to optimize the implementation of large scale DLRM
implementations with multiple sparse embedded tables operations. In
particular we show an implementation that is 1.4X to 2X better than
the best known Intel CPU based implementations on state-of-the-art
DLRM benchmarks on a real heterogeneous memory platform from In-
tel, and 1.32X to 1.45X improvement over Intel’s 2LM implementation
that treats the DRAM as a hardware managed cache.

1 Introduction

Deep Learning Recommendation Models (DLRM) are state of the art AI/ML
workloads underlying large scale ML-based applications [16]. These models re-
quire hundreds of gigabytes of memory and thousands of sparse embedding table
operations [16], which makes them challenging to implement on current computer
systems. As shown in Figure 1, DLRM model operates on a collection of dense
features and sparse features. Dense features are processed by a standard Multi-
Level Perceptron (MLP) network. The sparse features, on the other hand, are
used to index into embedding tables to extract dense features. Sparse features
can encode information such as a user id, product id, etc. The outputs of the in-
dividual embedding table lookups are concatenated together and combined with
the output of the bottom MLP using various feature interaction techniques. Post
interaction tensors are processed by a final top MLP before yielding a final re-
sult. The architectural implications of these networks has been investigated in
depth in the literature [7]. Embedding table lookup and update operations are
memory bandwidth intensive while the dense MLP layers, on the other hand,
are compute intensive. This combination stresses many architecture subsystems.
Further complicating matters is the size of these embedding tables, which can
occupy tens to hundreds of gigabytes and are expected to grow [7,12].

Emerging heterogeneous memory based platforms that combine terabytes of
non-volatile RAM such as 3DXpoint [11] and hundreds of gigabytes of DRAM



2 M. Hildebrand, J. Lowe-Power, and V. Akella

Fig. 1: Generalized DLRM architecture

are naturally attractive as they meet the memory demands of DLRM work-
loads at a reasonable power/cost [2, 4]. When moving to these heterogeneous
memory systems, we must manage the data movement and placement smartly
to achieve the best performance. There are three classes of techniques to move
data in these heterogeneous memory systems: hardware (usually at a 64-byte
block granularity), operating system (usually at a page granularity), or directly
by the application (at any granularity). Unfortunately, each of these techniques
come with significant downsides. Hardware-based data movement wastes mem-
ory bandwidth by requiring up to four extra memory accesses on every demand
request and can lead to poor performance [9]. OS-based data movement is not
always timely and can be wasteful for applications with sparse memory access
patterns [13, 22]. Finally, requiring the application developer to manually move
data is burdensome and requires modifying the algorithm and deep application
changes [3, 20].

Naive methods for heterogeneous memory embedding table management may
fall short for several reasons. First, just placing the tables in non-volatile mem-
ory will not yield good performance due to the significantly lower performance
of non-volatile memory technologies such as 3DXpoint when compared with
DRAM. Next, the reuse pattern of entries within an embedding table can vary
significantly from essentially random highly local and can change over time [5].
This suggests the need for a dynamic policy that is capable of meeting these
different requirements. Further, while researchers have investigated using het-
erogeneous memory to store portions of these embedding tables [4], these works
tend to focus on using NVMe SSDs for their tiered storage. The main issue with
simple caching is that embedding table are sparsely accessed and lookups have
little spatial locality and varying temporal locality.

In this paper, we focus on deep learning recommendation workloads with
very large sparse embedding tables. We will show the data use/reuse patterns
with sparse embedding tables is complex and there are complex interactions be-
tween due to the sparsity of the tables, batch size, features size, number of tables
accessed, number of accesses, and parallelization techniques for lookup/update
operation which cause poor performance for hardware caches. To decrease the
burden on programmers but get the performance benefits of manually data move-
ment, we introduce CachedEmbeddings which is a new runtime-optimized data



DLRM Implementation on Heterogeneous Memory Systems 3

structure for the embedding tables of the Deep Learning Recommendation Model
(DLRM) workload. Specifically, we will target data movement during the em-
bedding table lookup and gradient descent update operations. In this paper, we
refer to a system with DRAM and non-volatile memory as a heterogeneous mem-
ory system and Intel’s Optane Persistent Memory which is based on 3DXpoint
non-volatile memory technology as PM (Persistent Memory).

The novel contributions of this work are two fold. First, almost all the prior
work in this area has focused on optimizing the embedding table operations on
a homogeneous memory platform (CPU or GPU) taking advantage of the statis-
tical distribution of the embedding table rows with clever partitioning and data
layout techniques. In this work, we first perform benchmarking and analysis of
a heterogeneous memory platform and show that it introduces a different set of
tradeoffs (Section 3). Second, the core contribution of this work is a data tiering
framework (or algorithm) that is centered around a new data structure (called
CachedEmbeddings) and an API to implement different platform-specific data
movement optimizations integrated with Julia programming framework. So, the
proposed framework can be used for future workloads that may have different
access patterns, model capacities, and statistical distributions, and more impor-
tantly different hardware platforms. The proposed data tiering framework goes
beyond a traditional software-managed cache in terms of providing a comprehen-
sive mechanism for memory allocation and deallocation, prefetching, and moving
data at larger granularity that is closer to the semantics of the data. This makes
it easier for the programmer to use the proposed API.

We evaluate our implementation of DLRM based on CachedEmbeddingsand
find it is is 1.4X to 2X better than the best known Intel CPU based implemen-
tations on state-of-the-art DLRM benchmarks on a real heterogeneous memory
platform from Intel [12], and 1.32X to 1.45X improvement over Intel’s 2LM
implementation that treats the DRAM as a hardware managed cache for the
non-volatile memory.

2 Related Work

Bandana [5] aims to reduce the amount DRAM required for DLRM inference
workloads on CPU clusters by using a combination of DRAM and SSDs, using
heuristics to determine how to cache embedding vectors in DRAM. Like our
work, Bandana also caches hot vectors in DRAM. However, Bandana needs to
overcome the coarse read granularity of SSDs and must use hypergraph parti-
tioning to group vectors with spatial locality to the same sector within the SSD.
Persistent memory does not have this limitation, so this work investigates fine-
grained vector caching while still maintaining high read and write bandwidth to
PM. A performance model for DLRM training on GPUs is presented in [14] and
using heterogeneous memory for DLRM inference to lower power consumption
and cost is presented in [2] and DLRM inference on CPU cluster is presented
in [8]. There are two state-of-the-art implementations of DLRM training in re-
cent literature. Facebook’s NEO [16] is software/hardware codesign of large scale



4 M. Hildebrand, J. Lowe-Power, and V. Akella

DLRM models on a custom GPU-based hardware platform called ZionEX. It uses
a customized 32-way set-associative software cache with LRU and LFU cache
replacement policies and enables fine grain control of caching and replacement.
Though NEO is focused on the GPU ecosystem, it provides motivation for the
need of software managed caches to deal with large embedding tables. Intel’s
DLRM implementation [12] focuses on efficient parallelization across multiple
CPU and a novel implementation of the SGD optimizer targeting mix-precision
training. We extend this work by proposing a scale-up solution taking advantage
of heterogeneous memory. Recently there has been work [1,19,21] in identifying
and storing "hot" vectors in faster memory. Further, recent work [6] proposed
a software caching idea similar to ours for GPU-based DLRM training, though
with a different implementation mechanism.

To the best of our knowledge this is the first work on implementation and op-
timization of large scale DLRM training on a system with DRAM and nonvolatile
RAM (Intel’s Optane Persistent Memory). In addition, this work introduces a
generic data management API for optimizing embedded table implementations
on heterogeneous memory systems that is useful beyond just DLRM workloads.
This work goes beyond just caching frequently used vectors to providing a mech-
anism to the programmer to tailor the movement of data algorithmically to meet
the unique constraints/features of the underlying hardware platform.

3 Implementing Embedding Tables in Heterogeneous
Memory Systems

As noted in prior works [1, 16, 17, 19] embedding table operations have high
bandwidth demands and low computation intensity, and moreover, one size doest
not fit all. So, it is a challenge even on a homogeneous memory system like a
CPU or GPU. Heterogeneous memory introduces new challenges. Performance of
embedding tables depends on a variety of parameters such as number of threads,
whether the feature size is fixed as a compiler-time parameter or dynamic, which
means known at runtime, the feature size (we sweep from 16 to 256), the number
of accesses, number of tables (we vary from 10 to 80), the location of the tables,
whether they are in PM or DRAM, number of worker threads, direct vs indirect
lookup (one memory access to retrieve the pointer to the vector and one more
access to retrieve the vector) standard vs non-temporal stores for conducting the
final write operation of an embedding table update. Non-temporal stores hint
to the hardware that the associated data is not intended to be used in the near
future, enabling CPU cache optimizations.

Methodology Experiments were conducted on a single socket, with one thread
per core on a 2-socket 56 core (112 thread) Intel Xeon Platinum 8276L running
Ubuntu 21.10 with 192 GiB (6x32 GiB) DRAM and 1.5 TB (6x256 GiB) Optane
DC NVRAM (3DXpoint-based PM) per socket. We used an embedding table li-
brary written in Julia1 to decouple embedding table operations from data struc-
1 https://github.com/darchr/EmbeddingTables.jl



DLRM Implementation on Heterogeneous Memory Systems 5

ture implement. For deep learning primitives, we wrote a Julia wrapper around
Intel’s oneDNN library2.

The experiments consisted of running the kernel of interest multiple times
until 20-seconds of wall-clock time had elapsed, the execution time for each invo-
cation was logged. For each invocation of the kernel, new lookup/update indices
where generated randomly from a uniform distribution. Execution time for the
gradient descent update kernels includes the time for reindexing. In addition to
execution time, hardware performance counters for DRAM and PM read and
write traffic were also collected, sampled at the beginning and end of each kernel
invocation. All experiments used a large batchsize of 16384. Embedding tables
were sized to occupy a memory footprint between 1 GiB and 80 GiB to minimize
the effect of the L3 cache.

16 64 128 256
0

2,000

4,000

6,000

51
1

1
,2
58

2,1
40

4
,31

7

8
14

1,2
30

2,4
94

4
,52

7

Featuresize

R
un

tim
e

(u
s)

Static Dynamic

(a) Non-reducing lookup using DRAM.

16 64 128 256
0

5,000

10,000

594

1,943

3
,980

8,090

2,210

2,003

4
,117

7,826

Featuresize

R
un

tim
e

(u
s)

Static Dynamic

(b) Non-reducing lookup using PM.

16 64 128 256
0

100

200
8

25

50

101

41 40

81

155

Featuresize

R
un

tim
e

(m
s)

Static Dynamic

(c) Reducing lookup using DRAM.

16 64 128 256
0

200

400

21

67

125

227128 96

174

340

Featuresize

R
un

tim
e

(m
s)

Static Dynamic

(d) Reducing lookup using PM.

Fig. 2: Comparing the execution time of static versus dynamic feature-sizes for
a single embedding table lookup operation using a single thread. Figures cover
the range of non-reducing and reducing (accesses = 40) operations with the
embedding table in either DRAM or Optane PM. Within each regime, a range
of feature sizes is explored. All runs used single-precision floating point with a
batchsize of 16, 384 and nvectors = 10, 000, 000

Systems equipped with Optane can run in two modes, an app direct mode
where memory is explicitly allocated on PM with loads and stores going directly

2 https://github.com/hildebrandmw/OneDNN.jl



6 M. Hildebrand, J. Lowe-Power, and V. Akella

to the devices and a 2LM cache mode where DRAM acts as a transparent direct-
mapped cache for PM [11]. Unless otherwise specified, all of our experiments were
conducted in app direct mode. Next, we present relevant and interesting results
from the large number of experiments conducted.

Static and Dynamic Featuresize First, we investigate the trade-off between dy-
namic and static feature size definitions for both reducing and non-reducing
lookups. Figure 2 compares the execution time of static versus dynamic fea-
tures sizes for a single embedding table lookup using a single thread across the
combinations of reducing (accesses = 40) and non-reducing lookups with the
embedding table in DRAM and Optane PM. In different situations, embedding
table definitions may or may not know a priori the size of the embedding ta-
ble entries, which leads to different code generation and different performance.
With static feature sizes, the compiler can specialize the embedding table lookup
code for a single feature size. In the dynamic case, the compiler cannot optimize
the embedding table accesses. Additionally, when feeding the embedding table
lookup results into the dense MLP in DLRM, sometimes a single embedding
table entry is used (non-reducing) and other times many entries from the em-
bedding table are reduced into a single value which is sent the MLP. We find
that for non-reducing accesses there is little difference in performance, but when
multiple lookups are required for each output, the static implementation out-
performs the dynamic one in the reducing case. Finally, the performance of PM
in these applications is on the order of 2× slower than DRAM showing that
even for a single thread, memory location matters. This demonstrates that ker-
nel implementation matters and knowledge of the underlying hardware is key to
achieving high performance for these types of workloads.

To show that the lookup implementation is highly performant, we demon-
strate that the implementation achieves close to the theoretical bandwidth of the
platform. When the tables are located in DRAM, we achieve close to 100 GB/s
of read bandwidth. This is close to the theoretical bandwidth of 110 GB/s. THe
PM bandwidth achieved during ensemble lookup is between 10 GB/s (feature-
size 16) and 25 GB/s (featuresize 256), which tracks well with the expected
random-access read-only bandwidth for these devices [11].

SGD Update Performance - Worker Threads and Nontemporal Stores Figure 3
shows an example ensemble gradient update performance broken down between
DRAM and PM, number of worker threads, and usage of standard versus non-
temporal stores. The performance of DRAM (Figures 3a and 3b) increases with
the number of threads with little performance difference between standard and
non-temporal stores during the update phase. However, for DRAM, the indexing
time to create the new CSR array for gradient updates dominates the total
update time except for the largest embedding element sizes.

Persistent memory (Figures 3c and 3d) exhibits more nuanced behavior. Be-
cause the write bandwidth to PM is much lower, reindexing time is less of a
bottleneck than it is for DRAM. Furthermore, non-temporal stores tend to per-
form significantly better, especially for larger feature sizes. This is likely because



DLRM Implementation on Heterogeneous Memory Systems 7

non-temporal stores evict the corresponding cachelines from the cache. This
causes the writes to appear at the memory controller as a group allowing for
write-combining within the Optane memory controller (this generation of Op-
tane DIMMs have a 256 B access granularity). Without non-temporal stores,
the corresponding cache lines only arrive at the memory controller when evicted
from the L3 cache, leading to lower spatial locality.

16 (S)
16 (NT)

64 (S)
64 (NT)

256 (S)
256 (NT)

0

500

1,000

737
(259)

788
(261)

62
(258)

194
(254)57

(258)
164

(254)

Featuresize (Storetype)

R
un

tim
e

(m
s)

(Index Time) Update Time

(a) Tables in DRAM with 12 threads.

16 (S)
16 (NT)

64 (S)
64 (NT)

256 (S)
256 (NT)

0

500

1,000
644

(253)
625

(253)

40
(256)

129
(253)39

(256)
124

(254)

Featuresize (Storetype)
R

un
tim

e
(m

s)

(Index Time) Update Time

(b) Tables in DRAM with 28 threads.

16 (S)
16 (NT)

64 (S)
64 (NT)

256 (S)
256 (NT)

0

10,000

20,000

30,000

40,000 29403
(254)

28653
(253)

732
(256)

2591
(254)

1095
(256)

4490
(254)

Featuresize (Storetype)

R
un

tim
e

(m
s)

(Index Time) Update Time

(c) Tables in PM with 12 threads.

16 (S)
16 (NT)

64 (S)
64 (NT)

256 (S)
256 (NT)

0

20,000

40,000 29621
(254)

34408
(254)

903
(256)

4874
(253)1428

(256)

5911
(256)

Featuresize (Storetype)

R
un

tim
e

(m
s)

(Index Time) Update Time

(d) Tables in PM with 28 threads.

Fig. 3: Execution time for embedding table SGD application comparing the use of
non-temporal (NT) and standard (S) stores. 40 independent tables were used with
1 million vectors each, 40 tables accesses per output, batchsize 16384. Times to
perform the update (no parentheses) and the indexing procedure (in parentheses)
are given above each bar.

For these experiments, the time taken by the reindexing procedure is mostly
constant and takes a large fraction of the overall execution time when the em-
bedding tables are in DRAM. This is largely because the reindexing procedure
is largely targeted for situations where the number of unique indices accessed
is relatively small compared to the number of vectors in the table. A choice of
data structures and reindexing operation targeted more specifically at this “high
density” situation may reduce the this time.

Note that in all cases exhibit a sharp increase in execution time when moving
from a feature size of 64 (256 bytes) to 256 (1024 bytes). This is because the
contiguous memory accesses of 1024 bytes are sufficient to trigger the stream-



8 M. Hildebrand, J. Lowe-Power, and V. Akella

ing prefetcher, which fetches more than just the necessary cache lines causing
bandwidth bloat. This phenomenon goes away when the streaming prefetcher
is disabled in the system BIOS. In our experimental data is reported with the
prefetcher enabled as we expect this to be a more common scenario.

Design Space Exploration Summary Through our experiments, we make the fol-
lowing conclusions. First, placing the tables in PM results in lower performing
lookup and update operations than DRAM. Further, this highlights the need to
perform some kind of heterogeneous memory management to get the capacity
advantage of PM without paying the full performance price. Second, higher per-
formance implementations of embedding table operations requires cooperation
with and understanding of the underlying hardware and the best implementa-
tion can change depending on the particular operation. For example, the use
of non-temporal stores for update operations is beneficial for performance when
embedding tables are in PM, but makes little difference when DRAM is used.
Finally, in the context of multithreaded ensemble lookups and updates, an extra
level of indirection can be tolerated limited performance penalty (about a 2×
overhead for featuresize 16 down to about 10% for a feature size of 128). This
is the main idea behind our idea of memory management for these tables which
will be presented in the next section. Adding this indirection allows individual
vectors to be stored in either PM or DRAM. With careful selection, we should be
able to move frequently accessed vectors into DRAM while leaving infrequently
accessed ones in PM, providing most of the performance of an all DRAM with
the capacity of PM.

4 Cached Embeddings

In this section, we discuss how to apply the framework of heterogeneous memory
management to embedding table lookups and updates into an approach called
CachedEmbeddings.3 Key aspects to keep in mind are that (1) access to each
embedding table is performed on the granularity of feature vectors, (2) there
is no reason to expect accesses to exhibit spatial locality, and (3) accesses may
exhibit temporal locality. The key insight of CachedEmbeddings is to add an
extra level of indirection to each feature vector access, allowing individual feature
vectors to be cached in DRAM while stored in PM.

Figure 4 shows an overview of our approach. Base data for the embedding
table is located in PM (beginning at address 0x1000 in the example). Each
embedding table maintains a cache in DRAM that vectors can be migrated to.
Internally, the embedding table maintains a vector of pointers, one for each row,
pointing to where the primary region for that row is. Since embedding table rows
are relatively large (> 64B), these pointers have unused lower order bits. We
use the least significant bit (LSB) to encode whether the corresponding row is in
the base data or in a cache page. The second LSB is used as a lock-bit. A thread
wanting to move a row uses an atomic compare-and-swap to gain ownership of
3 https://github.com/darchr/CachedEmbeddings.jl



DLRM Implementation on Heterogeneous Memory Systems 9

Fig. 4: Overview of CachedEmbeddings. Base data lives in PM, (with a base
address of 0x1000 as an example). In this example, each feature vector occupies
16 bytes. A pointer table tracks the actual location of each vector with the least
significant bit indicating whether it’s cached. Upon a lookup access, vectors are
moved into cache pages. Each page contains backedges, which indicates whether
the corresponding slot is filled and if so, the vectors original location.

the row. If ownership is acquired, the thread is free to move the row into the
cache and unlock the row.

To support multithreaded access, the cache is composed of multiple cache
pages with synchronization for allocation. If the most recent cache page is full,
then the thread must acquire a lock for the table in order to allocate new cache
page. The cache has a configurable maximum size, beyond which no more feature
vectors can be migrated until the cache is flushed. Each cache page also maintains
a vector of backedge pointers to each cached row’s original location (or null if the
slot is empty) to facilitate this flushing. The cache is flushed one page at a time.
If the cache page is entirely clean (in the case that only lookups were performed
with no update operations), flushing a cache page simply involves updating the
pointer table back to each vector’s original location and then deleting the cache
page. If the vectors are dirty (e.g., the table was used during training) then
the vectors within the cache page must also be written back to their original
location.

The size of the cache is determined by two parameters. The parameter
cachelower is a soft lower bound for the size of the cache. When the cache
is flushed, pages will be sequentially flushed until the size of the cache is less
than cachelower. The parameter cacheslack is flexible space to allow the cache
to grow. New vectors can be cached until the total size of the cache exceeds
cachelower + cacheslack. Thus, the size of the DRAM cache for each table
can fluctuate between cachelower and cachelower + cacheslack.

Table 1 outline the API for a CachedEmbeddingTable. At a high level, the
functions access_and_cache and access provides methods for retrieving feature
vectors while optionally migrating vectors into the table’s DRAM cache. Setters
set_cachelower and set_cacheslack are used to modify their corresponding



10 M. Hildebrand, J. Lowe-Power, and V. Akella

Operation Description
access_and_cache Get the pointer for the requested feature vector, caching it in

DRAM if (1) the cache is not full, (2) the vector is not already
cached, and (3) ownership of the row is acquired.

access Get the pointer for the requested feature vector without caching.
This function is connected to the rowpointer function for all
other access contexts besides Forward.

set_cachelower Set the cachelower variable.
set_cacheslack Set the cacheslack variable.

isfull Return true if the cache is full. Otherwise, return false.
flush_clean Purge the oldest cache pages until the size of the cache is less

than cachelower. Do not write back data from cache pages to
the base array.

flush_dirty Purge the oldest cache pages until the size of the cache is less
than cachelower. Do write back data from cache pages to the
base array.

Table 1: API for a CachedEmbeddingTable.

cache size parameter variables. Finally, flush_clean and flush_dirty provide
methods for reducing the size of the cache to enable future vector accesses to
be cached. With this API, we can simply extend CachedEmbeddings to new
memory architectures (e.g., CXL) by modifying the backend implementations
of these functions. On the user-facing side of the API, there will be no changes
required to port the application to a new memory technology.

We evaluated the performance impact of a level of indirection and found it
does not have a significant impact on the embedding table lookup time. An extra
level of pointer chasing causes a slight slowdown when embedding tables are in
DRAM, but it has roughly performance parity when the tables are in PM. In
this bandwidth constrained environment with a large number of threads, the
overhead introduced by an extra level of pointer chasing is negligible. Thus, we
can add a level of indirection, allowing individual feature vectors to be located
in either DRAM or PM, without a large sacrifice in performance.

4.1 CachedEmbeddings Performance

In this section, we perform experiments to determine the performance of the
CachedEmbeddings.

Methodology When comparing the performance of CachedEmbeddings to stan-
dard embedding tables, we focus on the lookup operation performance. This is
because, in the context of DLRM training, feature vectors will be cached in
DRAM during the lookup operation and simply accessed during the gradient
descent operation. The performance of this update operation and subsequent
cache flushing is harder to micro-benchmark for a couple of reasons. First, in



DLRM Implementation on Heterogeneous Memory Systems 11

the context of DLRM training, we would expect all embedding tables entries
accessed during the update phase to already be cached. Second, the frequency of
a flush operation is dependent on the input index distribution and thus doesn’t
necessarily occur on every training iteration. Consequently, we will examine up-
date performance when we study then end-to-end performance of DLRM with
CachedEmbeddings in Section 6.

For our benchmarks, we want to target conditions where a mix of DRAM
and PM makes sense (i.e., the total memory footprint is high). To that end,
we investigate ensemble lookups with 80 tables and 28 threads with featuresizes
of 16 and 256 and accesses of 1 and 40. Furthermore, each table consisted of 1
million vectors and a batch size of 16384 was used. To investigate the effects of
cache size, we set cacheslack to be 5% and cachelower to 10%, 25%, 50%, 75%
and 100% of each table’s total memory footprint.

To investigate the effects of temporal locality (e.g., users frequently returning
to a web application), the lookup indices for each table are drawn from either a
uniform distribution (which has low temporal locality) or a Zipf [18] distribution
with α = 1 (which has high temporal locality). In order to avoid spatial locality
introduced by the Zipf distribution, the index sampling is followed by a maximum
length linear feedback shift register (LFSR) using a different seed for each table.

For comparison points, the same experiments were run for standard embed-
ding table with either all data stored in DRAM or PM and no indirection in the
lookup accesses. As before, each lookup operation is invoked multiple time with
different indices until the total benchmark runtime exceeds 20 seconds. For the
experiments conducted using CachedEmbeddings, the flush_clean operation is
run after each invocation.

Results Figure 5 shows the results for a non-reducing embedding table ensemble
lookup. The left-most and right-most bars in each figure show the performance
of a standard embedding table with all DRAM and PM respectively. In between
is shown the performance of a CachedEmbeddings, with the label giving the
sum of cachelower and cacheslack as a percent of the ensemble’s total memory
footprint. For a featuresize of 16 (Figure 5a and 5b), the overhead of cache
management overheads dominates resulting in significant slowdown over the all
PM simple table. Even with the larger featuresize of 256, CachedEmbeddings
requires a fairly large cache size to outperform the all PM standard table.

There are a number of reasons for this. First, non-reducing lookups are es-
sentially a memory copy from either DRAM to DRAM or PM to DRAM. This
higher DRAM write traffic can, to some extent, help mitigate the lower read
bandwidth of PM which we can see with the 2× lower performance of the PM
based simple tables than the DRAM based ones for the uniform distribution. Sec-
ond, because flush_noclean is called after every invocation and only at most
16384 are accessed on each lookup (around 1.6% of the embedding table) the
table never reaches the state where the cache is full (recall that cacheslack was
set to 5% of the overall table size). This means that the CachedEmbeddings table



12 M. Hildebrand, J. Lowe-Power, and V. Akella

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

10

20

30

3 4
11

18
25

28

8

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(a) Featuresize 16 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

5

10

2
3

4
5

7
9

4

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(b) Featuresize 16 - Zipf (α = 1)

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

50

100

150

49 58
71

85
99 108

87

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(c) Featuresize 256 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

20

40

60

80

41
48 48 50 55 60 58

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(d) Featuresize 256 - Zipf (α = 1)

Fig. 5: Comparison of CachedEmbeddings with standard embedding tables lo-
cated in DRAM or PM for nonreducing lookups for uniform and zipf distribu-
tions. Runs were conducted with 80 embedding tables and 28 worker threads.

is always doing extra work and cannot necessarily take advantage of preexisting
cached vectors.

Figure 6 shows the performance of CachedEmbeddings for reducing lookups
(with accesses = 40). Again, the smaller feature sizes yield poorer performance
advantages (or even performance regressions at smaller cache sizes) because the
time spent moving data around is so low enough that the extra steps required by
CachedEmbeddings can dominate. However, for larger feature sizes like 64 and
256, the performance of CachedEmbeddings nearly interpolates linearly between
the performance of all DRAM and all PM. This is because with a batchsize
of 16384 and 40 accesses per batch, a large portion of each embedding table is
accessed on each lookup operation, resulting in the each embedding table’s cache
staying “full” for a large portion of the lookup operation. When full, the extra
level of indirection for the embedding tables is amortized by the large number of
worker threads, providing a performance benefit over all PM when an accessed
vector is in DRAM with little overhead when it is not. This effect is magnified
with the Zipf distribution which yields a very high DRAM hit rate with only a
modest cache size.

Discussion There are several regimes where this approach of fine-grained het-
erogeneous memory management can be effective. When the hit rate into the
managed DRAM cache is sufficiently high (in the case of the Zipf index distri-
bution) and the feature size is large enough to amortize the overhead of adding



DLRM Implementation on Heterogeneous Memory Systems 13

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

200

400

37
88

204 239
305

347 319

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(a) Featuresize 16 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

100

200

19
58

94
132

154 163
123

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(b) Featuresize 16 - Zipf (α = 1)

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

2,000

4,000

871 928
1,258 1,585

2,254
2,723

3,590

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(c) Featuresize 256 - Uniform

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

1,000

2,000

454 576 622 724 800 863

1,800

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(d) Featuresize 256 - Zipf (α = 1)

Fig. 6: Comparison of CachedEmbeddings with standard embedding tables lo-
cated in DRAM or PM for reducing lookups with 40 Runs were conducted with
80 embedding tables and 28 worker threads using the preallocation strategy.

indirection to vector access, then CachedEmbeddings can outperform all PM
with a relatively small amount of DRAM. Even in cases where the hit rate is
not particularly high (the case of the uniform index distribution), CachedEm-
beddings can still achieve a level of performance between all DRAM and all PM
provided the cache becomes full and the amount extra work involved on each
access decreases. At this operating point, each vector access just adds a level of
indirection, sometimes hitting in DRAM and sometimes hitting in PM. Those
accesses to DRAM are accelerated while those to PM have little penalty over
the all PM case.

This suggests another use strategy for CachedEmbeddings called the static
approach. If the input distribution is known to have little locality or if hot
entries in the distribution are known a priori, then an appropriate subset of the
table can be preemptively moved to DRAM (using access_and_cache) until the
table’s cache is full. At this point, further accesses will only fetch and not move
feature vectors. This approach will not respond dynamically to changes in the
input distribution, but as we pointed out, may be appropriate is some situations.

5 DLRM Implementation Methodology

We implemented the DLRM model in Julia4, and to verify our model perfor-
mance, we compared our DLRM implementation Intel’s optimized PyTorch [12]
4 https://github.com/darchr/DLRM.jl



14 M. Hildebrand, J. Lowe-Power, and V. Akella

Small Mode Large Model
Featuresize 16 128

Num Embeddings Tables 26 26
Embedding Table Sizes min = 3, max = 8.9e6, µ ≈ 1.2e6, σ = 2.6e6

Bottom MLP 512-256-64-16 512-256-128
Top MLP 512-256-1 1024-1024-512-256-1
Batchsize 8192 32768

Table 2: Model hyperparameters used for DLRM PyTorch comparison.

submission to MLPerf [15]. This reference model using custom PyTorch exten-
sions to enable BFloat16 for high performance dense network computations. We
were able to acquire temporary access to an Intel Cooperlake server, a genera-
tion equipped with vector instructions for BFloat16 based dot products. Since
our implementation is build on top of oneDNN (which supports the BFloat16
datatype), we incorporated the BFloat16 data type into our model as well.

We used two models for comparison, a small model used as Facebook’s of-
ficial DLRM sample model and the model used in MLPerf 2019 training [15].
The hyper parameters for these tables is shown in Table 2. The optimized Py-
Torch implementation used split SGD [12] for their BFloat16 weights. With this
optimizer, MLP and embedding table weights are kept in BFloat16, and each
weight array is associated with a similar sized array filled with 16-bit integers.
During the weight update phase of training, these BFloat16 variables are con-
catenated with their respective 16-bit integer in their sibling array to create a
full 32-bit float. The gradient update is applied to this 32-bit value, which is
the decomposed back into a BFloat16 and 16-bit “mantissa”. Using this strategy,
the authors keep a full 32 bits of precision for training while using 16 bits of
precision for inference. Importantly, this technique does not decrease the mem-
ory requirement of the embedding tables. Consequently, we implement the split
SGD trick for the MLP layers of our implementation, but keep our embedding
tables in full Float32.

Training data came from the Kaggle Display Advertising Challenge dataset.
Both small and large models were run for a single epoch of training on the
dataset, iterating over the data in the same order. Further, both our model and
the PyTorch model began with the same initial weights.

Figure 7 shows the loss progression of our model and the optimized PyTorch
model for the small and large networks. Figures 7a and 7c show loss as a function
of iteration number while Figures 7b and 7d show loss as a function of time.

We found that our model has slightly higher (worse) loss per iteration, imply-
ing our treatment of BFloat16 is not quite as precise as the PyTorch. However,
our model has a significant less in loss over time because each iteration is pro-
cessed much more quickly. When comparing end-to-end performance for training
DLRM, our Julia model is slightly faster than the optimized PyTorch demon-



DLRM Implementation on Heterogeneous Memory Systems 15

0 1,000 2,000 3,000 4,000 5,000
0.45

0.5

0.55

Iteration

Lo
ss

Intel’s
Ours

(a) Small model, training loss per itera-
tion.

0 50 100 150
0.45

0.5

0.55

Time (S)

Lo
ss

Intel’s
Ours

(b) Small model, training loss over time.

0 200 400 600 800 1,000 1,200

0.5

0.55

Iteration

Lo
ss

Intel’s
Ours

(c) Large model, training loss per itera-
tion.

0 100 200 300

0.5

0.55

Time (S)

Lo
ss

Intel’s
Ours

(d) Large model, training loss over time.

Fig. 7: Convergence comparison between the PyTorch optimized DLRM and
ours. Our model has a slightly higher loss per iteration, but lower loss per wall
clock time.

strating that we have a high-performant implementation of DLRM to investigate
the impacts of different embedding table lookup algorithms.

Figure 8 shows the time breakdown of each iteration for both implementa-
tions and models. Our performance benefit comes from three major areas. First,
our MLP backward pass is much faster. This is because we are using an up to
date version of oneDNN to compute our backward pass kernels while the PyTorch
model at the time was using libxsmm. It should be noted that Intel’s extensions
for PyTorch have since switched to using oneDNN. Second, our implementation
has a faster embedding table and weight update through our parallel embedding
table update and parallel weight update strategies. Note that even though the
wall-clock time for the large network embedding lookup is slightly larger than
PyTorch, we’re moving twice the amount of data because our tables were kept
in Float32 while PyTorch used BFloat16. Finally, our implementation has less
miscellaneous overhead, a factor especially apparent for the small network where
PyTorch.

6 End-to-End DLRM Performance

In this section, we investigate the performance of CachedEmbeddings for full
DLRM training. We investigate several different management schemes built on
top of CachedEmbeddings and compare their performance with Intel’s built-in
2LM hardware managed DRAM cache.



16 M. Hildebrand, J. Lowe-Power, and V. Akella

Intel’s
Implementation

Ours
0

50

100

150

200

250

300

8.17

10.26

40

35.31

4.69

12.55

8.56

15.89
170

93.35

30
22.4819.84 4.02

R
un

tim
e

(m
s)

(a) Large Network

Intel’s
Implementation

Ours
0

5

10

15

20

25

30

1

0.5

3

2.33

0.32

0.91

0.89

0.79

9

6.63

5

1.91

8.92

0.29

R
un

tim
e

(m
s)

Embedding Lookup
MLP Forward

Interaction
Interaction Back
MLP Backward
Weight Update

Misc

(b) Small Network

Fig. 8: Timing breakdown of key layers in our DLRM comparison.

Policies We implemented three simple policies on top of CachedEmbeddings.
The simple policy leaves all embedding vectors in PM, using DRAM to store
the results of an embedding table lookup and intermediate data for the dense
computations. This policy uses a simple embedding table without the level of
indirection required for a CachedEmbedding table. The static policy allocates
a specified amount of memory in DRAM as cache pages, fills these cache pages
with random rows, then disables all dynamic row caching. At run time, a row
access will either be serviced from DRAM (if one of the rows that was cached
ahead of time) or from PM. The dynamic policy involves dynamically moves
feature vectors into cache pages in DRAM. During lookup of a particular row,
the current thread checks if the accessed row is cached and if so directly returns
a pointer. If the row is not cached, the thread attempts to dynamically cache
the row using the mechanism described above before returning the pointer. If
the row fails to obtain ownership of the row, a pointer to the base data is used.

Over time, the dynamic policy will increase the footprint of the cache pages
as more rows are moved into DRAM. In order to compare fairly with memory
mode (which has access to all of DRAM), we need a per-table cache size small
enough to fit in DRAM along side all memory used by the dense computations
but large enough to achieve high utilization of the available DRAM. Thus, we
set a cache size limit of 2 GiB for each table for a total memory footprint of
128 GiB across the ensemble. Cache pages are sized to be a fraction of this limit
and when the limit is reached, the oldest cache page is cleaned up.

If the sparse input distributions are known, then policies can be updated on
a per-table basis, (e.g., changing the amount of cache allowed for a table).

Methodology To test CachedEmbeddings, we used a very large DLRM with the
hyper parameters shown in Table 3. This model has large and deep MLPs and
a memory footprint of around 393 GB for its embedding tables. For this large
model, both embedding table operations and dense computations take a sig-



DLRM Implementation on Heterogeneous Memory Systems 17

Parameter Value Parameter Value
Number of Tables 64 Rows per Table 6000000

Featuresize 256 Lookups per Output 100
Bottom MLP Length 8 Bottom MLP Width 2048

Top MLP Length 16 Top MLP Width 4096
Batchsize 512

Table 3: Parameters for the large DLRM model used for benchmarking.

nificant fraction of overall training iteration time. Models with smaller dense
networks will be more bottlenecked on embedding table operations, and models
with fewer tables or with fewer lookups per output will be more compute bound.

The input distributions for embedding tables used in industry are proprietary,
though literature suggest that there is at least some temporal locality. In this
work, we chose to select two extremes. First, we use a uniform random input
distribution for all tables. This is nearly the worst case for caching as there is
limited reuse. Second, we use a Zipf [18] distribution with α = 1 for each table,
scrambling the input for each table using a maximum length LFSR starting at a
random phase. This distribution has significant temporal locality. Dense inputs
were generated using a normal distribution.

2LM CE
Simple

CE
Static

CE
Dynamic

0

500

1,000

1,500

694 226

133 171

233
659

447 480

532 417 422 423

R
un

tim
e

(m
s)

(a) Uniform.

2LM CE
Simple

CE
Static

CE
Dynamic

0

200

400

600

800 173
136

84
60131 337 240 163

548
416 418 418R

un
tim

e
(m

s)

Lookup Update
Computation

(b) Zipf (α = 1.0)

Fig. 9: Performance with different sparse input distributions. Operations
“Lookup” and “Update” refer to embedding table lookup and update respectively.
All other operations are grouped into “Computation”. Abbreviation “CE” stands
for “CachedEmbeddings” and "2LM" stands for Intel’s default hardware cache.

Results The results for our large DLRM model are shown in Figure 9. Figure 9a
shows performance when a uniform distribution is used to drive sparse accesses
while Figure 9b demonstrates the same model for the Zipf distribution. The
baseline that we compare to is “2LM” or using the DRAM as a hardware-based
cache for the PM. Since the embedding table size greatly exceeds the DRAM
size, only a small part cache be cached in DRAM at any time, and during
training all of these entries will be updated and must be written back to PM
when new entires are moved into the DRAM (i.e., it is a writeback cache).



18 M. Hildebrand, J. Lowe-Power, and V. Akella

These writebacks mostly occur during the lookup which is why that portion of
the bar in Figure 9a is dominate. In the case with more locality (Figure 9b) the
writebacks mostly occur during the MLP computation. By explicitly managing
the memory movement in software, we avoid these hardware cache actions.

For the CachedEmbeddings runs, the performance of the dense layers is nearly
the same. This is expected since now all dense computations are performed with
memory in DRAM. The simple case is capable of achieving nearly the whole
bandwidth of the PM devices. However, since embedding table updates must be
done directly into PM, we see a performance degradation due to the low PM write
bandwidth. The static policy performs the best. In this mode, embedding table
lookup and update operations are serviced from both DRAM and PM. Thus,
there is a performance benefit if for accessing rows in DRAM over the simple
policy without a performance loss if the vector is in PM. The dynamic policy is
able to perform a little better than the simple one because all embedding table
updates go to DRAM. However, it is slower then static for embedding table
lookups because the eager caching of embedding table vectors incurring more
DRAM write bandwidth, competing with PM reads. Further more, dynamic
incurs a slightly higher update penalty due to cache management (writing back
dirty rows from old cache pages).

When switching from a uniform distribution (low reuse) to a Zipf distribu-
tion (α = 1, high reuse), we observe speedups in embedding table and lookup
performance across the board. Several factors are at play here. First, with this
level of reuse, CPU caches become effective, reducing overall memory traffic. The
embedding table update sees further performance increases due to our gradient
aggregation strategy where the entire gradient for each embedding table vector
is accumulated before applying the optimizer. With higher reuse, there are fewer
indices per lookup and lower write traffic to PM.

Finally, we can see the effect of 2LM and CachedEmbeddings based caching
mechanisms. The lookup performance of 2LM increases by 4× as the DRAM
cache stops experiencing such a high miss rate. Further, the performance of dy-
namic improves by 2.85× compared to with the uniform distribution, surpassing
the static strategy since it is able to correctly cache the hot vectors in DRAM.
Indeed, we observe that there is a slight performance regression of simple when
compared to 2LM as there is enough locality in the accessed vectors to overcome
some of the issues associated with the hardware managed DRAM cache.

We again see the benefit of adding knowledge of program behavior to the
memory management policy. When the sparse input distribution is uniform, our
cache is too small to have a high enough hit rate to offset the overhead of moving
vectors into the cache. In this case, a static partition of the data structures results
in better utilization of the multiple levels of memory. However, when there is
enough temporal locality in the input distribution for caching to be effective,
fine grained memory management is exactly what we need. Tailoring of policy
to the specifics of hardware and runtime situation is essential for performance.



DLRM Implementation on Heterogeneous Memory Systems 19

7 Conclusions and Future Work

In this work, we presented the design space exploration of implementing multiple
large and sparse embedding table operations on a heterogeneous memory plat-
form using a new data structure called CachedEmbeddings. The main technique
presented in this paper works best at larger feature sizes where the effort required
to maintain the embedding table is out-weighed by the cost of the embedding
table operation itself. Nevertheless, the existence of a caching mechanism for
embedding table entries allows for custom policies to be implemented, tailored
to the observed distribution in embedding table accesses.

Large and sparse embedding tables are not unique to DLRM workloads but
also are useful in other ML workloads such as Transformers [10]. As a software-
only technique, CachedEmbeddings can be adapted to future disaggregated mem-
ory systems, for instance CXL-based fabric-attached memory platforms.

References

1. Adnan, M., Maboud, Y.E., Mahajan, D., Nair, P.J.: Accelerating recommendation
system training by leveraging popular choices. Proc. VLDB Endow. 15(1), 127–140
(sep 2021), https://doi.org/10.14778/3485450.3485462

2. Ardestani, E.K., et al.: Supporting massive DLRM inference through software
defined memory. CoRR abs/2110.11489 (2021), https://arxiv.org/abs/
2110.11489

3. Dhulipala, L., McGuffey, C., Kang, H., Gu, Y., Blelloch, G.E., Gibbons, P.B., Shun,
J.: Sage: Parallel semi-asymmetric graph algorithms for nvrams. Proc. VLDB En-
dow. 13(9), 1598–1613 (May 2020), https://doi.org/10.14778/3397230.
3397251

4. Eisenman, A., Gardner, D., AbdelRahman, I., Axboe, J., Dong, S., Hazelwood,
K.M., Petersen, C., Cidon, A., Katti, S.: Reducing DRAM footprint with NVM in
facebook. In: Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018,
Porto, Portugal, April 23-26, 2018. pp. 42:1–42:13 (2018), https://doi.org/
10.1145/3190508.3190524

5. Eisenman, A., Naumov, M., Gardner, D., Smelyanskiy, M., Pupyrev, S., Hazel-
wood, K.M., Cidon, A., Katti, S.: Bandana: Using non-volatile memory for stor-
ing deep learning models. CoRR abs/1811.05922 (2018), http://arxiv.org/
abs/1811.05922

6. Fang, J., Zhang, G., Han, J., Li, S., Bian, Z., Li, Y., Liu, J., You, Y.: A frequency-
aware software cache for large recommendation system embeddings (2022), https:
//arxiv.org/abs/2208.05321

7. Gupta, U., et al.: The architectural implications of facebook’s dnn-based person-
alized recommendation. CoRR abs/1906.03109 (2019), https://arxiv.org/
abs/1906.03109

8. Gupta, U., et al.: Deeprecsys: A system for optimizing end-to-end at-scale neural
recommendation inference. In: 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA). pp. 982–995. IEEE (2020)

9. Hildebrand, M., Angeles, J.T., Lowe-Power, J., Akella, V.: A case against hardware
managed dram caches for nvram based systems. In: 2021 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). pp. 194–204
(2021)



20 M. Hildebrand, J. Lowe-Power, and V. Akella

10. Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., Hoefler, T.: Data movement is all you
need: A case study on optimizing transformers. Proceedings of Machine Learning
and Systems 3, 711–732 (2021)

11. Izraelevitz, J., Yang, J., Zhang, L., Kim, J., Liu, X., Memaripour, A., Soh, Y.J.,
Wang, Z., Xu, Y., Dulloor, S.R., Zhao, J., Swanson, S.: Basic performance measure-
ments of the intel optane DC persistent memory module. CoRR abs/1903.05714
(2019), http://arxiv.org/abs/1903.05714

12. Kalamkar, D., Georganas, E., Srinivasan, S., Chen, J., Shiryaev, M., Heinecke,
A.: Optimizing deep learning recommender systems training on cpu cluster ar-
chitectures. In: SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–15. IEEE (2020)

13. Kim, J., Choe, W., Ahn, J.: Exploring the design space of page management for
multi-tiered memory systems. In: 2021 {USENIX} Annual Technical Conference
({USENIX}{ATC} 21). pp. 715–728 (2021)

14. Lin, Z., et al.: Building a performance model for deep learning recommendation
model training on gpus (2022), https://arxiv.org/abs/2201.07821

15. Mattson, P., et al.: Mlperf training benchmark (2019)
16. Mudigere, D., et al.: Software-hardware co-design for fast and scalable train-

ing of deep learning recommendation models. In: Proceedings of the 49th An-
nual International Symposium on Computer Architecture. p. 993–1011. ISCA
’22, Association for Computing Machinery, New York, NY, USA (2022), https:
//doi.org/10.1145/3470496.3533727

17. Naumov, M., et al.: Deep learning recommendation model for personalization and
recommendation systems. CoRR abs/1906.00091 (2019), http://arxiv.org/
abs/1906.00091

18. Powers, D.M.W.: Applications and explanations of Zipf’s law. In: New Methods in
Language Processing and Computational Natural Language Learning (1998)

19. Sethi, G., Acun, B., Agarwal, N., Kozyrakis, C., Trippel, C., Wu, C.J.: Recshard:
Statistical feature-based memory optimization for industry-scale neural recommen-
dation. In: Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems. p. 344–358.
ASPLOS ’22, Association for Computing Machinery, New York, NY, USA (2022),
https://doi.org/10.1145/3503222.3507777

20. Shanbhag, A., Tatbul, N., Cohen, D., Madden, S.: Large-scale in-memory an-
alytics on intel® optane™ dc persistent memory. In: Proceedings of the 16th
International Workshop on Data Management on New Hardware. DaMoN ’20,
Association for Computing Machinery, New York, NY, USA (2020), https:
//doi.org/10.1145/3399666.3399933

21. Xie, M., Lu, Y., Lin, J., Wang, Q., Gao, J., Ren, K., Shu, J.: Fleche: An efficient
gpu embedding cache for personalized recommendations. In: Proceedings of the
Seventeenth European Conference on Computer Systems. p. 402–416. EuroSys
’22, Association for Computing Machinery, New York, NY, USA (2022), https:
//doi.org/10.1145/3492321.3519554

22. Yan, Z., Lustig, D., Nellans, D., Bhattacharjee, A.: Nimble page management for
tiered memory systems. In: Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019. pp. 331–345 (2019),
https://doi.org/10.1145/3297858.3304024


