
FlexCPU: A Configurable Out-of-Order CPU
Abstraction

Bradley Wang, Ayaz Akram, Jason Lowe-Power
University of California, Davis

{radwang, yazakram, jlowepower}@ucdavis.edu

Abstract—We present FlexCPU, a new software model for
CPU performance integrated into gem5. FlexCPU combines the
benefits of trace-based models with execute-in-execute seman-
tics which leads to more accurate simulation of multithreaded
and full-system applications. Our design is heavily inspired by
dataflow models, and it reduces modern out-of-order techniques
to abstracted parameterized constraints. FlexCPU can be con-
figured to match the behaviors of modern general purpose
CPUs and used for limit studies. By reducing CPU behaviors
to reasonable abstractions and stages, FlexCPU is simpler to
understand and easier to extend than other execute-in-execute
CPU models. We show that FlexCPU can achieve the maximum
theoretical ILP for most workloads and show a case study of
using FlexCPU to model multiple processor architectures.

I. INTRODUCTION

In this paper, we present a new CPU model that we integrate
into gem5 [1] that we call FlexCPU. FlexCPU is an execute-
in-execute model that takes inspiration from trace-based and
dynamic binary translation model designs (e.g. Sniper [2],
ZSim [3], and many others). It combines the flexibility trace-
based models with the precision of execute-in-execute models.
FlexCPU does this by separating the execution logic from
the timing model so that the execution logic is unhampered
by specific hardware design constraints. The execution logic
implements out-of-order features, such as the instruction win-
dow, register renaming, speculative behavior, etc. Behaviors
can then be constrained by the user with simple and easy
to understand parameters which allows FlexCPU to model
a wide range of hardware implementations from speculative
out-of-order processors to in-order designs to future microar-
chitectures that can exploit high ILP.

When constructing CPU performance models there is a
tradeoff between precisely modeling one specific microarchi-
tecture and flexibility. Most current simulation systems pick
one of the two extremes. For example, gem5’s out-of-order
CPU model (O3CPU) is a detailed model “with a strong
focus on ensuring timing accuracy” originally designed for the
Compaq Alpha XP1000 with an Alpha 21264 processor [4].
On the other hand, simulators like ZSim [3] and Sniper [2] give
up execute-in-execute semantics and the increased execution-
stream specificity that comes with models like O3CPU but
gain significant flexibility.

Different simulation studies require different kinds of CPU
models, and not all simulation studies should use a model
“with a strong focus on ensuring timing accuracy” to a particu-
lar hardware implementation. Many studies want a CPU model

that is forward-looking and can simulate future CPU designs.
For instance, when studying novel memory systems, the details
of any one CPU microarchitecture are often less important than
its theoretical peak performance. Especially with the end of
Dennard scaling and Moore’s Law and the emergence of many
on-chip accelerators, the computer architecture community
needs a simple, flexible, easy to configure and understand out-
of-order core model.
FlexCPU presents a new point on the precision-flexibility

spectrum for architectural simulators. FlexCPU is almost
as configurable as perfect knowledge trace-based simulation,
while fully respecting execute-in-execute semantics. Thus,
FlexCPU is applicable for performing complex simulations
with I/O, full system kernel, and multithreaded workloads. It
serves as a more general CPU than O3, appropriate for studies
which are not about core microarchitecture specifics.

II. USE-CASES

There are three main use-cases for FlexCPU that are not
well served by current CPU models.

Conducting limit studies of ILP

By having a CPU model that is not constrained by a specific
hardware implementation, it allows researchers to perform
limit studies (at least within the bounds of execute-in-execute).
FlexCPU can be used with full systems simulation, multiple
cores, and with I/O, unlike existing trace-based and binary
translation-based tools (e.g., MICA [5]).

Emulating future high performance out-of-order cores

When looking at future systems, we want to be able
to simulate future out-of-order cores. However, simulating
current or older microarchitecture limits CPU performance.
With FlexCPU, researchers get to choose how aggressive they
believe future CPUs will be and are not limited by today’s
microarchitecture implementation.

Modelling current processors accurately and simply

Finally, often when performing research on non-CPU mi-
croarchitecture components researchers simply want to have
a “reasonable” CPU model. However, configuring gem5’s
rigid O3CPU to a “reasonable” system that models current
processors can be challenging. For example, there is a paper
dedicated to configuring gem5 to match an ARM SoC [6], and
many papers showing gem5’s shortcomings e.g. [7], [8].



FlexCPU is “relatively accurate,” i.e. when you change a
parameter (e.g., the fetch width) the processor’s performance
changes accordingly. Models with 100s of design specific
parameters are not well suited for “relative accuracy” since
it is not clear to the user how each parameter will affect
performance. This makes FlexCPU useful as a teaching tool,
as its constraints are simple and directly affect the performance
in understandable ways.

III. DESIGN PHILOSOPHY

In designing FlexCPU, we placed an emphasis on making
a CPU whose fundamental behavior was straightforward. As
a result, we present FlexCPU as a reduction of the overall
behaviors of any CPU to a set of dependencies and constraints.
As evidenced by FlexCPU’s ability to model multiple classes
of CPUs simply by adding or removing dependencies and
constraints, we have shown that this reduction creates a
powerful tool because we can make small, definite changes
to cause understandable changes in behavior.

We believe that the simple CPU design of FlexCPU gives
researchers a number of advantages over alternative designs:

1) Easier to understand if key ideas are just logical
steps instead of specific implementations and complex
coupling between hardware units.

2) Easier to use with simple logical parameters.
3) Easier to extend since we have a simple request-

to-callback mechanism by which all structurally con-
strained steps are completed, and a simple stage-
depends-on-stage mechanism by which logically con-
strained tasks are ordered.

4) Easier to model novel behaviors due to simple break-
down of stages between instructions, and a callback-
driven dependency system to schedule events not at a
specific time, but as early as certain conditions are met.

FlexCPU should become a good teaching/learning tool, on
top of being a configurable research tool.

IV. EXPERIMENTS AND RESULTS

As an example, we present a limit study case (Figure 1)
where we observe that FlexCPU’s performance is closer
to the theoretical limits calculated by MICA [5] than O3
is capable of achieving. MICA, as a trace-based simulator,
simulates under some assumptions which are not possible to
make with execute-in-execute, such as having perfect branch
prediction. We configure our systems to be as close to per-
fect as possible within execute-in-execute, including external
MICA assumptions, such as ideal single-cycle memory. The
microbenchmarks used for testing purposes are the ones that
were used to validate another microarchitecture simulator
SiNUCA [9].

For the microbenchmarks bound purely by true dependen-
cies between instructions (e.g. chain1/chain6) we observe sim-
ilar performance across the board. However, for microbench-
marks that stress the more inflexible structures in O3 such
as the fetch, branch prediction, and LSQ units, FlexCPU is
more capable of reaching theoretical limits by configuring

ctr
l_ra

nd

ctr
l_c

ond
chain

1
chain

6
int_a

dd
fp_m

ul

loa
d_dep1

loa
d_in

d1

sto
re_

ind1
0

10

20

30

IP
C

Mica_W256
SingleCycleFlex_W2K
O3_W2K
SingleCycleFlex_W256
O3_W256

Fig. 1. Some IPC numbers between FlexCPU, O3, and MICA’s theoretical
limit analysis, for selected microbenchmarks. Note the different window sizes.

penalties to zero-time events. In the case of independent loads,
since window-size is the dominating factor instead of true
dependencies, FlexCPU at a window-size of 2048 reasonably
manages to find more parallelism than MICA at a window size
of 256.

V. CONCLUSION AND FUTURE WORK

We believe that by starting with an ideal dataflow out-
of-order model, we will be able to model any CPU by
adding constraints. Future work will explore adding constraints
to FlexCPU to model specific real-world hardware (e.g.,
Intel i7).

When compared to ideal trace-based systems, control de-
pendencies such as branch mis-speculations are the main
cause of reduced IPC in FlexCPU. We are currently in-
vestigating adding support for multiple branch paths, since
the definition of a committed architectural state and streams
of state transition readily lends itself to branches off the
stream. The simplicity of selecting one and discarding the
other should mean that exploration of multiple paths should be
straightforward, and can get us even closer to an ideal scenario
within the limits of execute-in-execute.

We plan to introduce FlexCPU into upstream gem5.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, pp. 1–
7, May 2011.

[2] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM TACO, vol. 11,
no. 3, Article 28, 2014.

[3] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, vol. 41,
pp. 475–486, Tel-Aviv, Israel, Tel-Aviv, Israel, 23-27 June 2013.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems,”
IEEE Micro, vol. 26, pp. 52–60, July/August 2006.

[5] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEE Micro, vol. 27, pp. 63–72, May 2007.

[6] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver, “Sources of Error in Full-System
Simulation,” in ISPASS, pp. 13–22, Monterey, CA, 2014.

[7] T. Nowatzki, J. Menon, C. Ho, and K. Sankaralingam, “Architectural
simulators considered harmful,” vol. 35, pp. 4–12, 2015.

[8] A. Akram and L. Sawalha, “x86 computer architecture simulators: A
comparative study,” in Computer Design (ICCD), 2016 IEEE 34th Inter-
national Conference on, pp. 638–645, IEEE, 2016.

[9] M. A. Z. Alves, C. Villavieja, M. Diener, F. B. Moreira, and P. O. A.
Navaux, “Sinuca: A validated micro-architecture simulator,” in IEEE
HPCC, pp. 605–610, 2015.


