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Executive Summary

Problem

Understanding performance of a large DRAM cache for tera-scale NVRAM based systems.

Try to understand these caches

● Microbenchmarks on real hardware
● Case studies with real applications

Show that insights manifest in workloads

● Inflexible direct-mapped policy can lead to a high miss rate

● Significant bandwidth reduction under cache misses

● Potentially many unnecessary dirty writebacks
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Emerging Applications Are Growing
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DRAM expensive

Source: https://www.productsolving.com/p/openais-gpt-3-will-change-how-we

175 Billion 
Parameters!!



NVRAM Based Servers

● Cheaper per byte than DRAM

● Orders of magnitude more 
capacity

● Persistent and 
byte-addressable

● Increased latency and 
reduced bandwidth
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DRAM as Cache

Memory Mode (2LM)

Application

DRAM

NVRAM

Main 
Memory

Cache Smaller DRAM used to mask 
higher latency
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Software Managed Memory
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AutoTM (Our Group)1 Sage (Dhulipala et al.)2

CNN Training Graph Analytics

Method

Used static information to optimize 
tensor movement

Results

3x performance improvement over 
hardware caches

Method

Graph algorithms that mutate in DRAM 
only

Results

1.94x speedup over Galois(2LM)

Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, Venkatesh Akella - AutoTM: Automatic Tensor Movement in Heterogeneous Memory Systems using 
Integer Linear Programming (ASPLOS ‘20)
Laxman Dhulipala,Charles McGuffey, Hongbo Kang,Yan Gu,Guy E. Blelloch,Phillip B. Gibbons,Julian Shun - Sage: parallel semi-asymmetric graph algorithms for NVRAMs 
(VLDB ‘20)

[1]

[2]

https://dl.acm.org/doi/10.1145/3373376.3378465
https://dl.acm.org/doi/10.1145/3373376.3378465
https://dl.acm.org/doi/10.14778/3397230.3397251
https://dl.acm.org/doi/10.14778/3397230.3397251


Outline

● Background

● DRAM cache analysis

○ General characteristics

○ Microbenchmarks

● Performance in real workload

● Discussion
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DRAM Cache Characteristics

CPU CPUIntel System
● 384GB DRAM
● 6TB NVRAM

DRAM Cache
● Direct Mapped policy
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Micro Benchmarks: Cache Study

Goal: Understand access amplification and bandwidth capability.

Why: Tracking metadata for a 192GB cache is hard.

Strategy

● High performance kernels to generate custom read/write traffic.
● For misses: Large Array (over 2x size of the DRAM cache)
● Hardware performance counters.



Micro Benchmarks

● Suite of benchmarks to study 
bandwidth characteristics.

● Uses Julia’s metaprogramming 
capabilities to generate 
low-overhead inner loops.

AVX Vector Size

Nontemporal Store

Read-modify-write

Repo: https://github.com/darchr/KernelBenchmarks.jl

● Other knobs
○ Number of threads
○ Size of the underlying array
○ Sequential vs Pseudo-Random



DRAM Cache: High Access Amplification

5x access amplification

Microbenchmark Memory Accesses
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DRAM Cache: Poor Bandwidth Utilization

High DRAM cache miss 
rate experience severe 
bandwidth bottleneck

60% Utilization

72% Utilization

Achievable Observed with 
Dirty Misses

NVRAM Write 
Bandwidth

11 GB/s 8 GB/s

Microbenchmark Bandwidth Performance

Achievable Observed with 
Clean Misses

NVRAM Read 
Bandwidth

30 GB/s1 23 GB/s

12[1] Different from reported values due to larger DIMM size

Dirty misses are very expensive! 



Microbenchmark Insights

● 5x Access Amplification per demand access

● High Miss-rate → poor bandwidth utilization
○ Does not account for latency

It’s possible that future implementations can fix these issues, but there are other 
pitfalls as well.



Outline

● Background

● DRAM cache analysis

● Performance in real workload

● Discussion
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Case Study - DNN Training

Why
● DNN models keep getting larger
● Predictable memory access 

pattern to study

AutoTM¹
● Previous work optimizing tensor 

location and movement during 
DNN training

● Modifications to the ngraph² 
compiler for data analysis.

[1] https://github.com/darchr/AutoTM
[2] https://github.com/openvinotoolkit/openvino
Image from: https://medium.com/analytics-vidhya/openai-gpt-3-language-models-are-few-shot-learners-82531b3d3122

● AutoTM up to 3x faster than 2LM

https://github.com/openvinotoolkit/openvino


DNN Training

● Workload
○ DNN training for 4 popular networks: Vgg16, Inception-v4, Resnet-200, 

Densenet-264.
○ Scaled batchsize so maximum memory footprint exceeded 600 GB.

● Data Collection
○ Runtime, HW performance counters, ngraph telemetry.



Densenet-264 Training - AutoTM vs 2LM

1LM - Bandwidth looks reasonable:
● Write to NVRAM on the forward pass
● Read from NVRAM on the backward 

pass

Bandwidth trace for a single iteration of training using AutoTM.

Bandwidth trace for a single iteration of training using 2LM.

2LM - Odd behavior
● NVRAM writes on both forward and 

backward pass.
● Periods of high bandwidth at 

beginning of forward and backward 
pass.

● Much lower average bandwidth.

DRAM cache generates significant 
unnecessary dirty writebacks.



Outline

● Background

● DRAM cache analysis

● Performance in real workload

● Discussion

18



Takeaways

● Bandwidth utilization of 2LM is low, especially for applications with 
low locality.

● Particularly - dirty writebacks are very expensive.

● Hardware only doesn’t know if memory is free or not, so must 
always be conservative.

● DRAM caches allow for quick adoption of the large capacity 
offered by persistent memory.

But ...



Limitations of Software Data Management
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Specialization
● Requires application specific knowledge
● Not general enough for other use cases

CPU cores
● Using to move data
● Difficult to transfer data asynchronously



Future Work

21

How do we design a solution that is both implicit (like hardware caches) 
and high performance (like explicit data movement)?

What We Want
● High level knowledge of data access patterns of 

software
● Hardware acceleration benefits
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DRAM as Cache

Memory Mode (2LM)

Application

DRAM

NVRAM

Main 
Memory

Cache

Smaller DRAM used to mask 
higher latency
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Summary

What

● Microbenchmarks to understand cache performance.
● Two case studies showing superiority of software managed 

memory over hardware managed.

Conclusions

● Bandwidth is not used efficiently with a high miss rate.
○ Metadata Tracking
○ Small cache granularity

● Without application insight, cache has to be conservative.




