A Case Against Hardware Managed DRAM Caches for NVRAM Based Systems

Mark Hildebrand

ECE Dept., UC Davis mhildebrand@ucdavis.edu

Julian T. Angeles

CS Dept., UC Davis jtangeles@ucdavis.edu

Jason Lowe-Power

CS Dept., UC Davis jlowepower@ucdavis.edu

Venkatesh Akella

ECE Dept., UC Davis akella@ucdavis.edu

Executive Summary

Problem

Understanding performance of a large DRAM cache for tera-scale NVRAM based systems.

Try to understand these caches

- Microbenchmarks on real hardware
- Case studies with real applications

Show that insights manifest in workloads

- Inflexible direct-mapped policy can lead to a high miss rate
- Significant bandwidth reduction under cache misses
- Potentially many unnecessary dirty writebacks

Emerging Applications Are Growing

Source: https://www.productsolving.com/p/openais-gpt-3-will-change-how-we

NVRAM Based Servers

- Cheaper per byte than DRAM
- Orders of magnitude more capacity
- Persistent and byte-addressable
- Increased latency and reduced bandwidth

DRAM as Cache

Memory Mode (2LM)

Software Managed Memory

AutoTM (Our Group)¹

CNN Training

Method

Used static information to optimize tensor movement

Results

3x performance improvement over hardware caches

Sage (Dhulipala et al.)²

Graph Analytics

Method

Graph algorithms that mutate in DRAM only

Results

1.94x speedup over Galois(2LM)

[1] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, Venkatesh Akella - AutoTM: Automatic Tensor Movement in Heterogeneous Memory Systems using Integer Linear Programming (ASPLOS '20)

[2] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch, Phillip B. Gibbons, Julian Shun - Sage: parallel semi-asymmetric graph algorithms for NVRAMs (VLDB '20)

6

Outline

- Background
- DRAM cache analysis
 - General characteristics
 - Microbenchmarks
- Performance in real workload
- Discussion

DRAM Cache Characteristics

DRAM Cache

• Direct Mapped policy

Micro Benchmarks: Cache Study

Goal: Understand access amplification and bandwidth capability. **Why:** Tracking metadata for a 192GB cache is **hard**.

Strategy

- High performance kernels to generate custom read/write traffic.
- For misses: Large Array (over 2x size of the DRAM cache)
- Hardware performance counters.

Micro Benchmarks

- Suite of benchmarks to study bandwidth characteristics. Uses Julia's metaprogramming L64: vmovntdga capabilities to generate vmovntdga low-overhead inner loops. vmovntdga vmovntdga Other knobs vmovntps Number of threads vmovntps Size of the underlying array
 - Sequential vs Pseudo-Random/ Ο

Read-modify-write

AVX Vector Size zmm1, zmmword ptr [rcx – 192] zmm2, zmmword ptr [rcx - 128] zmm3, zmmword ptr [rcx - 64] zmm4, zmmword ptr [rcx] vaddps zmm1, zmm1, zmm0 zmmword ptr [rcx - 192], zmm1 vaddps zmm1, zmm2, zmm0 zmmword ptr [rcx - 128], zmm1 vaddps zmm1, zmm3, zmm0 vmovntps zmmword ptr [rcx - 64], zmm1 vaddps zmm1, zmm4, zmm0 vmovntps zmmword ptr [rcx], zmm1 rcx, 256 add dec rax L64 ine

Nontemporal Store

 \bigcirc

Ο

DRAM Cache: High Access Amplification

Microbenchmark Memory Accesses

	LLC Read		LLC		Write		
	Hit	Miss		Hit	M	ISS	DDO
		Clean	Dirty		Clean	Dirty	
DRAM Read	1	1	1	1	1	1	
DRAM Write		1	1	1	2	2	1
NVRAM Read		1	1		1	1	
NVRAM Write			1		9	1	
Amplification	1	3	4	2	4	5	1

5x access amplification

DRAM Cache: Poor Bandwidth Utilization

	Achievable	Observed with Clean Misses	
NVRAM Read Bandwidth	30 GB/s ¹	23 GB/s	

	Achievable	Observed with Dirty Misses
NVRAM Write Bandwidth	11 GB/s	8 GB/s

Microbenchmark Bandwidth Performance

High **DRAM cache miss** rate experience severe bandwidth bottleneck

72% Utilization

60% Utilization

Dirty misses are very expensive!

[1] Different from reported values due to larger DIMM size

Microbenchmark Insights

- **5x** Access Amplification per demand access
- High Miss-rate → **poor bandwidth utilization**
 - Does not account for latency

It's possible that future implementations can fix these issues, but there are other pitfalls as well.

Outline

- Background
- DRAM cache analysis
- Performance in real workload
- Discussion

Case Study - DNN Training

Why

- DNN models keep getting larger
- Predictable memory access pattern to study

AutoTM¹

- Previous work optimizing tensor location and movement during DNN training
- Modifications to the ngraph² compiler for data analysis.
- AutoTM up to **3x faster** than 2LM

[1] https://github.com/darchr/AutoTM

[2] <u>https://github.com/openvinotoolkit/openvino</u>

Image from: https://medium.com/analytics-vidhya/openai-gpt-3-language-models-are-few-shot-learners-82531b3d3122

DNN Training

- Workload
 - DNN training for 4 popular networks: Vgg16, Inception-v4, Resnet-200, Densenet-264.
 - Scaled batchsize so maximum memory footprint exceeded 600 GB.
- Data Collection
 - Runtime, HW performance counters, ngraph telemetry.

Densenet-264 Training - AutoTM vs 2LM

Bandwidth trace for a single iteration of training using AutoTM.

1LM - Bandwidth looks reasonable:

- Write to NVRAM on the forward pass
- Read from NVRAM on the backward pass

2LM - Odd behavior

- NVRAM writes on both forward and backward pass.
- Periods of high bandwidth at beginning of forward and backward pass.
- Much lower average bandwidth.

DRAM cache generates significant unnecessary dirty writebacks.

UCDAVIS

Outline

- Background
- DRAM cache analysis
- Performance in real workload
- Discussion

Takeaways

• DRAM caches allow for quick adoption of the large capacity offered by persistent memory.

But ...

- Bandwidth utilization of 2LM is low, especially for applications with low locality.
- Particularly dirty writebacks are very expensive.
- Hardware only doesn't know if memory is free or not, so must always be conservative.

Limitations of Software Data Management

CPU cores

- Using to move data
- Difficult to transfer **data asynchronously**

Specialization

- Requires application **specific knowledge**
- Not general enough for other use cases

Future Work

What We Want

- High level knowledge of data access patterns of software
- Hardware acceleration benefits

How do we design a solution that is both **implicit** (like hardware caches) and **high performance** (like explicit data movement)?

Acknowledgements

- Intel Corporation
- NSF Grant No. CNS-1850566
- Members of the Davis Computer Architecture Research Group

A Case Against Hardware Managed DRAM Caches for NVRAM Based Systems

Mark Hildebrand

ECE Dept., UC Davis mhildebrand@ucdavis.edu

Julian T. Angeles

CS Dept., UC Davis jtangeles@ucdavis.edu

Jason Lowe-Power

CS Dept., UC Davis jlowepower@ucdavis.edu

Venkatesh Akella

ECE Dept., UC Davis akella@ucdavis.edu

DRAM as Cache

Memory Mode (2LM)

Summary

What

- Microbenchmarks to understand cache performance.
- Two case studies showing superiority of software managed memory over hardware managed.

Conclusions

- Bandwidth is not used efficiently with a high miss rate.
 - Metadata Tracking
 - Small cache granularity
- Without application insight, cache has to be conservative.

