
A Case Against Hardware Managed DRAM Caches
for NVRAM based Systems

Mark Hildebrand∗, Julian T. Angeles†, Jason Lowe-Power†, Venkatesh Akella∗
∗Department of Electrical and Computer Engineering

†Department of Computer Science
University of California, Davis

{mhildebrand, jtangeles, jlowepower, akella}@ucdavis.edu

Abstract—Non-volatile memory (NVRAM) based on phase-
change memory (such as Optane DC Persistent Memory Module)
is making its way into Intel servers to address the needs of
emerging applications that have a huge memory footprint. These
systems have both DRAM and NVRAM on the same memory
channel with the smaller capacity DRAM serving as a cache
to the larger capacity NVRAM in the so called 2LM mode. In
this work we analyze the performance of such DRAM caches on
real hardware using a broad range of synthetic and real-world
benchmarks. We identify three key limitations of DRAM caches
in these emerging systems which prevent large-scale, bandwidth
bound applications from taking full advantage of NVRAM read
and write bandwidth. We show that software based techniques
are necessary for orchestrating the data movement between
DRAM and PMM for such workloads to take full advantage
of these new heterogeneous memory systems.

I. INTRODUCTION

Large scale machine learning and large scale graph analytics
represent workloads of interest for high performance server
in the forseeable future. Emerging machine learning models
in NLP and recommendation engines (such as GPT3 [3] and
DLRM [33]) can have over 100 billion parameters requiring
hundreds of gigabytes to terabytes of memory for training.
Similarly real world graphs can have hundreds of billions
of edges, requiring hundreds of gigabytes to just store the
graphs [36]. As a result, the cost of memory (DRAM) is
becoming an important concern in datacenters and other high
performance computing facilities dealing with large scale data
analysis [15], [16].

To address this challenge Intel recently introduced Optane
Data-Center Persistent-Memory-Modules (DC PMM), a non-
volatile memory (NVRAM) technology based on phase change
memory that can serve as a drop-in replacement for conven-
tional DRAM [20]. While programmers can use the NVRAM
as a main memory DRAM replacement using normal load and
store instructions, the latency is 3× higher and the bandwidth
is at least 60% lower than DRAM [51]. Traditionally, to
hide high memory latency and limited bandwidth, computer
architects have turned to hardware caches. In this tradition,
Intel Cascade Lake systems implement a DRAM cache for the
NVRAM. DRAM caches have been well studied in simula-
tion [6], [7], [27]–[29], [31], [41]. These previous works have
not taken all of the realistic implementation details (e.g., track-

ing “coherence” of request issued to NVRAM) leaving gaps
between research proposals and the actual implementation.

In this work, we analyze the performance of an actual
implementation of the DRAM cache in Intel’s Cascade Lake
based servers on workloads whose memory footprint greatly
exceeds the capacity of DRAM. We first analyze the behavior
of the DRAM cache with microbenchmarks to reverse engineer
its design and understand pathological performance cliffs. It is
well known that this DRAM cache is implemented as a direct-
mapped [26], and we find that the tags are stored ECC bits of
the DRAM DIMMs to limits the access overhead. However,
we also find that in many cases there are extra DRAM accesses
required to update the cache metadata (e.g., tag reads before
writes) which can significantly decrease the performance of
miss-heavy workloads. In fact, using microbenchmarks on real
hardware, we find that a single demand request can require up
to 5 memory accesses.

After using microbenchmarks to understand the cache be-
havior and implementation, we analyze two memory capacity
limited workloads: training large convolutional neural net-
works (CNNs) [21], [24], [47], [48] and graph analytics [17].
We show that in these realistic workloads, the DRAM cache
can hurt performance even with a modest cache miss rate. We
show that for the CNN workload, software management can
increase performance by up to 3× over the DRAM cache.
Furthermore, we show significant access amplification and
bandwidth reduction for graph based workloads.

Fundamentally, we find three characteristics of this DRAM
cache implementation which causes performance degradation
for workloads with large working sets.

1) The direct-mapped, insert on miss cache is inflexible and
many conflicts can increase the miss rate.

2) Under high miss rates, memory bandwidth is poorly
utilized with extra bandwidth used for non-demand
accesses (e.g., fills, writebacks, and tag checks).

3) For some workloads the data in the DRAM cache
is temporary or dead from the program’s perspective
leading to wasted data movement.

While some of these characteristics may be alleviated in
future hardware, we can use these three insights on today’s
hardware to improve the performance of heterogeneous mem-
ory systems. We present one example of a static software
management technique which by managing the data movement



in software can mitigate many of these performance problems.
In the future, we hope that the insights presented in this paper
can influence the next era of DRAM cache development.

The rest of the paper is organized as follows. We start
with the quick background on Intel’s NVRAM technology
and related work in the area of benchmarking NVRAM from
recent literature. In Section III we present the details of
our evaluation and validation framework. Section IV follows
up with a detailed analysis of the DRAM cache in these
systems. Next we use two representative case studies from
deep learning and graph analytics to corroborate the findings
from the microbenchmark experiments. We end the paper with
a discussion of the results and the software based mitigation
strategies in Section VII.

II. BACKGROUND AND RELATED WORK

Intel Optane DC (NVRAM)1 is a phase-change based non-
volatile memory [20]. These devices come in a dual in-line
memory module (DIMM) form factor and have the same
physical footprint as traditional DRAM DIMMs. Memory con-
trollers in high-end Cascade Lake or newer Xeon processors
are capable of managing both a DRAM DIMM and a NVRAM
DIMM on the same memory channel. Since NVRAM resides
on the memory bus, CPUs may read and write to these devices
using normal load and store instructions.

NVRAM can be used in the so-called 2LM (also known
as memory mode or cached) [26], where NVRAM act trans-
parently as system memory. In this mode, system DRAM
serves as a direct mapped cache for the non-volatile memory.
NVRAM can also be used in the 1LM (or app direct) mode
using the ndctl2 tool to appear as regular devices that are
mounted into the Linux file system. In this mode, all loads or
stores to memory mapped regions on this device go directly
to the NVRAM devices themselves.

There have been several efforts in research literature that
focus on evaluating the system level performance of Optane
DC [26], [39], [40], [43], [49], especially in comparison with
DRAM. More recently, Wang et. al [50] developed a profiler
and NVRAM simulator to model the microarchitecture of
NVRAMs in general. However, to the best of our knowledge
there has been no effort in trying understand the performance
of DRAM caches in large scale NVRAM-based systems.
However, the tools described by Wang [50] could be used for
hardware/software codesign of DRAM caches in the future,
building on the findings in this paper.

On the application front there has been work on the design
of data structures and algorithms to mitigate the disadvantages
of NVRAMs, chiefly the slower and asymmetric read/write
latency and bandwidth [4], [13], [35], [38], [45]. Dhulipala et.
al [13] and Gill et. al [17] evaluate the performance of large
scale graph analytics on NVRAM based systems. These works
focus on application performance evaluation and optimization
but do not delve into the details of behavior of the DRAM

1In this paper we will use Optane DC and NVRAM interchangeably.
2https://docs.pmem.io/ndctl-user-guide/

Fig. 1. Diagram of our test platform. Each socket has 192 GiB of DRAM
and 3 TB of NVRAM spread across six memory channels.

cache (the 2LM mode) and why they do not work well on
these applications. The goal of this work is to fill this gap.
In fact, one could view Sage [13] as a software technique to
mitigate the limitations of DRAM caches in NVRAM based
systems as discussed in Section VI and Section VII

III. EVALUATION METHODOLOGY AND VALIDATION

A. Test System

Our test machine is a two-socket Xeon server (illustrated
in Figure 1) equipped with 24-core Cascade Lake engineering
sample CPUs. The CPU on each socket is equipped with two
integrated memory controllers (IMC), each with three mem-
ory channels. Integrated memory controllers are responsible
for performing the actual reads and writes to DRAM and
NVRAM. Each memory channel is populated with a 32 GiB
DDR4 DRAM DIMM and a 512 GiB Optane DC DIMM.

B. Evaluation Methodology

To test the basic bandwidth performance of DRAM and
NVRAM, both in 1LM and 2LM, we made a custom open
source benchmark generator3 written in Julia [2]. The gen-
erator uses Julia’s metaprogramming and just-in-time com-
pilation to generate custom low overhead load and store
loops. Memory can be accessed either sequentially or pseudo-
randomly. When accessed pseudo-randomly, we ensure that
each addresses is touched exactly once (i.e. no repeats) using
a maximum length Linear Feedback Shift Register to gener-
ate array indices. Furthermore, for pseudo-random iteration,
access granularity ranges from 64 B to 512 B. We found
sequential iteration is largely indifferent to access granularity,
so only a single result for sequential access is reported.
For these experiments, we used read-only, write-only, and
read-modify-write operations. We explore both standard or
nontemporal instructions for all stores. Nontemporal stores
bypass the on-chip cache, allowing us to directly study the
behavior of LLC writes to the memory controller. Data is
partitioned evenly across threads when multithreading is used.

To measure DRAM and NVRAM traffic, we use uncore
hardware performance counters located in each IMC. These
counters capture column access strobes (CAS) for DRAM
reads and writes. The Cascade Lake generation added IMC
counters for NVRAM read and write requests, and 2LM tag
statistics including tag hit, tag miss clean, and tag miss dirty,

3https://github.com/darchr/KernelBenchmarks.jl

https://docs.pmem.io/ndctl-user-guide/
https://github.com/darchr/KernelBenchmarks.jl


4 8 16 24
0

10

20

30

Number of Threads

B
an

dw
id

th
(G

B
/s

)
Random 64 B Random 128 B Random 256 B Random 512 B Sequential

(a) Read bandwidth using standard load instructions.

4 8 16 24
0

5

10

Number of Threads

B
an

dw
id

th
(G

B
/s

)

(b) Write bandwidth using nontemporal store instructions.

Fig. 2. Bandwidth to 6 interleaved 512 GiB NVRAM DIMMs.

which will be explained in more detail later. Results from the
hardware performance counters are validated with the expected
data movement and benchmark wall clock time.

Each benchmark was executed on a quiet system. Unless
otherwise specified, all six Optane DC DIMMs are configured
as a single interleaved set and experiments are run on socket
1 to avoid NUMA overheads.

C. NVRAM Performance Results

The results obtained here are in line with observations made
by other researchers [18], [26], [39], [43]. We highlight results
that are relevant to our upcoming discussion in Section IV on
the 2LM DRAM cache. Since read and write bandwidth to
Optane DC is asymmetric, we will consider these separately.
Figure 2a shows the read bandwidth of six interleaved 512 GB
NVRAMs under varying thread counts. Sequential bandwidth
scales with the number of threads up to a maximum 30 GB/s
with 8 threads, at which it stops increasing. This result is
slightly different than the 39 GB/s reported in other works [26]
because our system uses 512 GiB DIMMs instead of 128 GiB
or 256 GiB DIMMs. The 512 GiB DIMMs provide a maxi-
mum read bandwidth of 5.3 GB/s read bandwidth per DIMM
while the others provide 6.8 GB/s [9].

Figure 2b demonstrates the write bandwidth of NVRAM
when using nontemporal stores. In addition to bypassing the
on-chip cache, nontemporal stores do not need a Read-For-
Ownership (RFO), a step in Intel’s usual cache coherence
protocol [10], and are critical for high NVRAM write band-
width [51]. Write bandwidth peaks with four threads, and is
roughly the same for sequential and random access exceeding
256 B. Limited buffer space within the Optane DIMM de-
creases the media controller’s ability to merge sequential 64 B
writes into a single 256 B write, leading to write amplification
and the observed drop in bandwidth [51].

In summary, with this system we can achieve just over to
30 GB/s read and 11 GB/s write to NVRAM.

TABLE I
SUMMARY OF GENERATED READS AND WRITES FOR 2LM. FIGURE 3

SHOWS DETAILS OF WHY THESE REQUESTS GENERATE THESE ACTIONS.
THE DIRTY DATA OPTIMIZATION (DDO) ALLOWS THE IMC TO ELIDE THE

TAG CHECK FOR SOME WRITES.

LLC Read LLC Write
Hit Miss Hit Miss DDO

Clean Dirty Clean Dirty
DRAM Read 1 1 1 1 1 1
DRAM Write 1 1 1 2 2 1
NVRAM Read 1 1 1 1
NVRAM Write 1 1
Amplification 1 3 4 2 4 5 1

IV. DRAM CACHE / 2LM MODE

Intel Cascade Lake chips support a 2LM mode, where the
Optane DIMMs act as system memory and DRAM serves as
a transparent, hardware managed, direct-mapped cache [26].

The access granularity of this cache is 64B, matching the
cache line size of the underlying CPU. While not mentioned
explicitly, Intel patents suggest that cache tags are stored along
with ECC data [42]. ECC DRAM is implemented by adding
an extra DRAM module to each DIMM. Thus, each 64B
data transaction for each DIMM is accompanied by 8B (64
bits) of ECC. Of these 64 bits of ECC data, only 20 [5]
are required to provide Single Error Correction/Double Error
Detection redundancy, leaving ample room for tag metadata,
including both physical address and cache line state. Our data
is consistent with this approach.

In this section, we us microbenchmarks to try to deduce the
performance implications of the Cascade Lake DRAM cache
design. Our results are summarized in Table I and Figure 3.

A. Methodology

To study the behavior of the 2LM DRAM cache, we
used the same benchmarks discussed in Section III and the
same methodology for measuring bandwidth. In this case,
data gathered from the performance counters allows us to
differentiate DRAM and NVRAM traffic. Furthermore, the
tag related performance counters in each IMC allows us to
correlate tag events with memory traffic. Each IMC only
allows four events types to be recorded at a time. Since our
benchmarks are long running and largely deterministic, we run
them twice to obtain both bandwidth and tag events.

Table I summarizes the observed actions required for each
type of access to the IMC. We define two types of requests to
the IMC. An LLC Read is a request from the LLC for data
from the DRAM cache or NVRAM. This request is generated
on a load or store miss at the LLC. Stores can generate an
LLC read as they may require a RFO. An LLC Write is a
request from the LLC to write back dirty data to the DRAM
cache. LLC write requests are generated either when a dirty
line is evicted from the LLC or from a nontemporal store.

Furthermore, the hardware performance counters differenti-
ate between three different types of cache accesses: hit, clean
miss, and dirty miss. A hit implies that address accessed by
an LLC request is present in DRAM. A miss means that an



address is not resident in DRAM and must be fetched from
NVRAM. Since this cache is direct mapped, a miss implies
that some other data is occupying the set corresponding to the
requested address. A miss is dirty if this aliasing data has been
modified since its original insertion and thus must be written
back to NVRAM upon eviction.

To study read and write hits, we use the read-only and write-
only benchmarks respectively on a 51 GiB array backed by
1 GiB hugepages to mitigate TLB overheads. Because the
array is far larger than the 33 MB LLC cache, each CPU
load generates an LLC read and each CPU nontemporal store
generates an LLC write. This array is also small enough
to fit in the DRAM cache without aliasing. Thus, all LLC
reads/writes accesses will be cache hits.

Generating clean LLC read misses and dirty LLC write
misses is also straightforward. We use a 420 GB array, which
is over twice the size of the 192 GB DRAM cache per socket.
Applying the read-only benchmark to this array for several
iterations ensures a clean LLC read misses for each CPU
load. Similarly, the write-only benchmark ensures that each
nontemporal store generates a dirty LLC write miss.

Testing dirty LLC read misses and clean LLC write misses
is more complicated. For dirty LLC read misses, we first
prepare the 420 GB array from before by writing to it, making
the entire DRAM cache is dirty. We then perform a single
iteration of the read-only kernel. Thus, each CPU load early
in the iteration generate LLC reads that will be a dirty miss
in the cache. As the iteration progresses, however, a larger
portion of these loads become clean misses as the dirty cache
is replaced by clean data. Consequently, we determine cache
behavior based on data collected early in the iteration. We use
a similar procedure to prime and test clean LLC write misses.

When testing the behavior of the cache, we use nontemporal
stores when writing. This ensures that the behavior shown by
the IMC is purely the result of the incoming store and not an
earlier RFO. For all benchmarks, we also compute an effective
bandwidth as seen by the application. This is obtained using
the size of the array and wall clock time for each benchmark.

While we only outlined several key benchmarks to test the
different regimes of the DRAM cache, we also applied a whole
range of microbenchmarks with different thread counts and
access patterns to fully characterize the behavior of the cache
and validate the results presented here.

B. 2LM Observations

Table I summarizes our findings for the cache events and
Figure 3 demonstrates a flow chart of IMC logic that models
this behavior. We describe each of these columns in turn. To
help with our discussion, we use the term access amplifica-
tion [32] as the ratio of memory accesses (i.e., both DRAM
and NVRAM) to demand accesses.

LLC read hits are simple. The IMC initiates a DRAM read,
which fetches data along with thee tag in the ECC bits. A
tag check is performed and since the tag matches, the data is
immediately forwarded with no access amplification.

Miss handler

LLC read miss
(read)

hit

DRAM Read
fetch tag and data

check tag

miss

return data

return data

DRAM Write
Write data in cache

LLC writeback
(write)

dirty data optimization

miss
hit

DRAM Read
fetch tag and data

check tag
hit

miss DRAM Write
Update data in cache

DRAM Write
Update data in cache

Miss handler

NVRAM Read
Read data

DRAM Write
Insert data into cache

NVRAM Write
Write back dirty data

Check dirty bit

dirty

clean

Miss handler

Fig. 3. Flowchart showing the operation of the DRAM for LLC read misses
which occur on a processor load or store which misses in the LLC and LLC
writebacks which occur when a dirty block is evicted from the LLC. The
miss handler is the same for reads and writes and is factored out on the
right. Underlines indicate where the actions end, and bold shows the hardware
actions. A summary of total memory accesses is given in Table I.

Figure 4a shows bandwidth for the read-only benchmark in
the 100% clean miss scenario. Note a 3× access amplification
for each miss. Essentially, the tag miss is serviced by a miss
handler, which fetches the requested cache line from NVRAM,
inserts into DRAM, and forwards to the CPU. Dirty read
misses are handled much the same as clean read misses. The
only change is that the cache line evicted from DRAM must
be written back to NVRAM.

LLC write hits incur a 2× access amplification because the
IMC must first emit a DRAM read to perform a tag check.
Only upon verification of the tag can the line be safely written.

Next, we discuss dirty LLC write misses. Figure 4b shows
collected bandwidth for the write-only benchmark where each
nontemporal store is a dirty tag miss. Observe a 2× access
amplification in DRAM writes alone. Upon receiving a com-
pletely dirty cache line store yielding a tag miss, we would
expect the IMC to write the evicted line to NVRAM and
directly insert the incoming line to DRAM. This would yield
a total of 1 DRAM read (for the tag check), 1 NVRAM write,
and 1 DRAM write. However, the data in Figure 4b suggests
that this is not the case. Our best guess is that the memory
controller always inserts on a miss (regardless of whether that
miss was a read or write). The second DRAM write is thus the
actual write of cache line to DRAM. Clean LLC write misses
are similar dirty write misses without the NVRAM write back.

C. Dirty Data Optimization

Finally, this brings us to the phenomenon that we call
the Dirty Data Optimization (DDO). At times, the memory
controller is able to elide the tag check (i.e. DRAM read) and
instead directly forward LLC writes to DRAM. This can be
seen in Figure 4c which shows the distribution of traffic for
the read-modify-write benchmark in a 100% dirty LLC miss
scenario using standard stores. The CPU load initiates a dirty
LLC read miss (dirty from a previous write), accounting for



Random
64 B

Random
128 B

Random
256 B

Random
512 B

Sequential
0

10

20

M
ea

n
B

an
dw

id
th

(G
B

/s
)

DRAM Read DRAM Write NVRAM Read NVRAM Write Effective

(a) Read-only benchmark, clean LLC read misses, 24 threads.

Random
64 B

Random
128 B

Random
256 B

Random
512 B

Sequential
0

5

10

M
ea

n
B

an
dw

id
th

(G
B

/s
)

(b) Write-only benchmark, dirty LLC write misses, 24 threads, nontemporal
stores. Using 4 threads only increases the maximum write bandwidth by 1
GB/s.

Random
64 B

Random
128 B

Random
256 B

Random
512 B

Sequential
0

5

10

15

M
ea

n
B

an
dw

id
th

(G
B

/s
)

(c) Read-modify-write benchmark, dirty LLC read miss followed by a later
DDO LLC write, 4 threads, standard stores. Sequential achieves the highest
NVRAM write bandwidth of any 2LM benchmark with neglibile difference
between nontemporal and standard stores.

Fig. 4. Benchmark results on a large array exceeding the size of the DRAM
cache. Because the array size exceeds DRAM, the miss rate in the DRAM
cache is 100%. The “effective” bar illustrates performance as seen by the
application, computed by wall clock time and data accessed.

one DRAM read (tag check) plus the traffic associated with
a cache insert. Since standard stores are used, the subsequent
CPU store will remain in the LLC for some time before being
evicted and written to memory. Thus, there is low temporal
locality between a cache line’s load and its write back.

Due to this low locality, we would expect this delayed LLC
write to require another tag check, resulting in a total of two
DRAM reads per CPU load-store pair. However, this is not the
case and it appears this second tag check is elided. While this
could be explained by an inclusive cache, we found that this is
not the case as it is possible to have small amounts (< 8 KiB)
of aliasing data simultaneously within the CPU cache. Thus,
we are not sure the exact mechanism driving this optimization.

D. Discussion

We described our observation of 2LM’s mechanics, but
what does this mean for user applications? There are two
points we want to make. First, contrast Figure 4, which shows
the effective NVDIMM bandwidth in 2LM with a high miss
rate, with Figures 2a and 2b, showing the maximum speed
of NVRAM. The highest NVRAM read bandwidth in 2LM
(Figure 4a) is 23 GB/s and the highest write bandwidth

(Figure 4b) is 8 GB/s. This is 60% and 72% the demonstrated
achievable bandwidth of our system’s NVRAM. This is the
ideal case with well formed traffic. We expect applications
with a large memory footprint (exactly those that would benefit
from the large memory pool provided by NVRAM) and a
high DRAM cache miss rate to experience a severe bandwidth
bottleneck. Second, cache misses are costly in terms of extra
traffic generated, with LLC read and write misses generating
up to 3× and 5× access amplification. This is costly both in
terms of energy and lost bandwidth.

So far, we have demonstrated the potential for applications
to experience bandwidth bottlenecks in 2LM. In the next two
sections, we provide case studies demonstrating this effect on
real applications.

V. CASE STUDY 1: CONVOLUTIONAL NEURAL NETWORKS

In this section, we will take a deep dive into some of pitfalls
a bandwidth and compute heavy application can fall into when
running under 2LM. Specifically, we consider the problem of
training deep Convolutional Neural Networks (CNNs) whose
working set size greatly exceeds the physical DRAM of a
system, requiring the extra memory provided by NVRAM.

CNNs are typically expressed as a directed acyclic graph
of computation primitives such as convolutions and matrix
multipications, that are heavy on compute, and operations such
as batch normalization and concatenation that are heavy on
bandwidth requirements. At a high level, a single iteration
of training consists of a forward pass, during which the
network is evaluated (almost) normally on a batch of training
data (some kernels like Batch Normalization have slightly
different versions for training and inference [25]). The output
of the forward pass is compared to an expected output to
generate a loss value, which is used in the backward pass to
compute the partial derivative of the loss with respect to each
of the trainable parameters of the network. The parameters
of the network are adjusted based on the these derivatives.
An important aspect of the backpropagation algorithm is that
many intermediate values computed during the forward pass
must be preserved to compute the backward pass. Thus, the
active memory footprint of the network during an iteration
of training increases during the forward pass, then decreases
during the backward pass. It takes many such iterations of
training across different input samples to fully train a CNN.

A. Methodology

We implemented three popular large CNNs: Inception
v4 [48], Resnet 200 [21], and DenseNet [23] using the ngraph
compiler [11] on the NVRAM-based system described earlier.
Intel’s ngraph compiler is an optimizing compiler specifically
targeting static deep neural networks that takes advantage of
the Xeon CPU ISA. For these large networks, we scaled
the training batch size until the overall footprint of these
applications exceeded 650 GB, well beyond the capacity of
the DRAM cache. All networks were run on a single NUMA
node and assigned all 24 physical cores on that node with
no hyper-threading. These networks were run for two warm



0 50 100 150 200 250 300 350 400 450 500
0

2

4

·104

Time (s)

M
IP

s
RetiredInstructions

(a) System MIPS.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

Time (s)

B
ill

io
n

Ev
en

ts
/

S Tag Hit Tag Miss Clean Tag Miss Dirty

(b) DRAM cache statistics.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read DRAM Write
NVRAM Read NVRAM Write

(c) Memory bandwidth through time. NVRAM read and write bandwidths are
similar, thus the NVRAM read line is hidden behind the NVRAM write line.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

Forward Pass Backward Pass

Size of DRAM
Cache

Time (s)

M
em

or
y

Po
sit

io
n

(G
B

)

(d) Live memory in the ngraph heap. Memory that is highlighted gray
indicates memory that will be read before written (i.e., live memory). Blue
indicates a write is happening. Red indicates a read is happening. White shows
memory that will be written before read.

Fig. 5. Memory behavior of a single iteration of training for DenseNet 264
with a batchsize of 3072.

up iterations to trigger on-demand paging by the OS and to
prepare the state of the DRAM cache.

During the execution of these networks, we sampled hard-
ware performance counters for bandwidth and tag statistics.
Furthermore, we modified the ngraph compiler in two ways.
First, we added an option to emit high resolution timestamps
when beginning the execution of each compute kernel, al-
lowing us to correlate these events with performance counter
data. Second, we exposed information regarding the memory
assignment of intermediate tensors. This allows us to examine
which regions of memory are being accessed throughout the
network execution.

B. Results
For the deep dive, we present the results for DenseNet [23],

a CNN with a complicated dataflow pattern. In Figure 5 we
break down the bottlenecks of a single iteration of training
for DenseNet 264 with batchsize 3072. The baseline memory
footprint for this application is around 688 GB. Figure 5a
demonstrates the system’s retired instruction rate through time.
Figure 5b shows the number of tag hits, dirty tag misses, and
clean tag misses throughout the iteration.

Key observations to make are: (1) there very few clean tag
misses, (2) there is a high percentage of dirty tag misses, both
in the forward pass and the backward pass, and (3) there
noticeable regions of high tag hits at the beginning of the
forward and backward passes with a corresponding drop in
dirty tag misses. Finally, Figure 5c breaks down the read and
write bandwidths to DRAM and NVRAM. Regions of high
dirty miss rate correspond to low bandwidth and instruction
throughput. Reasonable system performance is only achieved
when the hit rate is high.

So, a good question at this point is - Why are so many dirty
tag misses generated, and why are there regions of high cache
hit rate? Two related phenomena can explain this.

Figure 5d shows the memory usage of DenseNet through
time for a single iteration of training. Before execution,
the ngraph compiler allocates a single buffer for the entire
network. The offset from the base of this buffer is shown on the
vertical axis of Figure 5d. The change in memory state through
time is shown using different colors. The color white indicates
that the region of memory is free (semantically speaking). That
is, it will always be written to before it is read by the program.
A blue highlight indicates that a region of memory is being
actively written to, red indicates a read, and gray indicates
that the memory will be read from in the future.

For an iteration of training, first the forward pass of
the model is computed (up to time around 220, annotated
in Figure 5d). Throughout the forward pass, some of the
generated intermediate tensors must be held in memory to
facilitate computation of the backward pass. Thus, the amount
of live memory (gray) accumulates through the forward pass.
Once a preserved tensor is used on the backward pass, the
region in memory where it was stored is free for further use
(white). The ngraph compiler takes advantage of this newly
freed area to allocate intermediate tensors required to compute
the backward pass. This is the very subtle streak of blue on
the right shoulder of Figure 5d.

However, from the perspective of the 2LM cache, the fact
that writes are occurring to a region of memory on the
backward pass makes memory is dirty with respect to the
DRAM cache. Hence, even when this region of memory is
semantically free from the program’s perspective, the cache
must still generate a dirty write back upon eviction. Because
the DRAM cache is unaware of the meaningful lifetime of
memory, it generates a large amount of unnecessary traffic.

Finally, the regions of high DRAM cache hit rate occur at
the beginning of the forward and backward pass because the
area of active memory folds back on itself. Recent data is in



152 154 156 158 160
0

20

40

60
ConvolutionBias

Concat
Batch

NormTrainingRelu

ConvolutionBias

Batch
NormTrainingRelu

ConvolutionBias

Concat
Batch

NormTrainingRelu

ConvolutionBias

Batch
NormTrainingRelu

ConvolutionBias

Concat

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read
DRAM Write
NVRAM Read
NVRAM Write

Fig. 6. Snapshot of periodic bandwidth behavior during the forward pass
of training DenseNet 264 in 2LM. Vertical bars mark the start of kernel
execution. Very short running kernels have been excluded for clarity.

the cache, so all accesses are cache hits. This continues until
the entire cache has been read, at which point further accesses
are cache misses.

C. Problematic Kernels

To wrap up this section, we will explain the relatively
high frequency periodic behavior that is noticeable in the
Tag Hit line of Figure 5b. DenseNet is composed of a linear
chain of “dense blocks” where each dense block consists of
a sequence of Concat, BatchNorm, Conv, BatchNorm, and
Conv operators. Figure 6 shows a high resolution snapshot of
the bandwidth for two such dense blocks during the forward
pass of DenseNet. The point where kernels begin execution
is annotated on the graph. The main performance bottlenecks
apparent in Figure 6 are Concat and BatchNorm. These are
both memory-bound kernels with little data reuse and are more
affected by the low bandwidth associated with a high dirty
tag miss rate. The second BatchNorm within each dense block
operates on much smaller intermediate tensors, and is thus less
impactful on overall performance. Similar problematic kernels
exist on the backwards pass as well, including BatchNorm-
Backprop and the back-propagation kernels for the filter/bias
inputs of 3x3 convolutions.

D. Discussion

In summary, the overall performance of CNN training in
2LM mode in NVRAM-based systems is affected by two
factors: (1) low effective bandwidth with a high miss rate and
(2) a significant amount of unnecessary dirty writebacks. From
the microbenchmarks, the first of these is not too surprising.
However, the second exposes exposes a performance pathol-
ogy not demonstrated by the microbenchmarks, made worse
by the relatively low write bandwidth of NVRAM. Next, we
will look at a different class of algorithms that suffer similarly.

VI. CASE STUDY 2: GRAPH PROCESSING

In this section, we perform a preliminary study on appli-
cations known for having diverse performance characteristics
and irregular memory access patterns. To accomplish this, we
evaluate a variety of graph processing algorithms on large
real world graph inputs using Galois [34], a high performance
shared memory graph analytics framework.

A. Background

Large graph processing has garnered substantial research
interest across a variety of use cases, including the identi-
fication of social media influencers and decision makers, or
finding fraudulent actors within a business network. These
real world large systems require frameworks process repre-
sentative graphs with tens of billions of nodes and trillions
of edges, incurring a high memory footprint that is expensive
to accommodate in DRAM. Depending on the topology of
the input graph and the processing algorithm being used,
the memory access pattern can vary wildly. This presents a
challenge when optimizing such workloads for systems with
limited main memory.

To address this issues, several efforts [14], [18] have ex-
plored leveraging NVRAM for graph analytics on a single
machine. However, such works focused on performing an anal-
ysis and comparison of different graph processing frameworks
and system settings to optimize the use of Optane for graph
workloads. Here, we evaluate the bandwidth characteristics of
such irregular workloads in 2LM.

B. Methodology

Graph kernel experiments were run on the shared memory
graph analytics framework Galois. Specifically, our evaluations
consisted of 4 benchmarks from the lonestar suite: breadth-
first search (bfs) [8], connected components (cc) [44], [46], k-
core decomposition (kcore) [12], and pagerank-push (pr) [37].
These kernels were chosen based on their diverse execution
characteristics [1]. Our workloads were run with the settings
by Gill et al. [18]. For bfs, the source node was the maximum
out-degree node. The tolerance of pr was set to 10−6 and we
used the k = 100 for kcore. Each kernel ran until convergence,
except for pr which ran for 100 rounds.

We used two realistic unweighted massive input graphs:
wdc12 [36], the largest publicly available graph, and
kron30 [30], a randomized scale free graph generated using a
graph500 based kronecker generator [19]. Each were chosen
to highlight the differences between when a graph fit and did
not fit in the DRAM cache. While these graphs have different
structures, we can still draw conclusions from kernels’ relative
performance on these graphs. Both were processed using the
provided graph-converter in Galois and resulted in binaries of
size 507 GB and 73 GB respectively.

In 2LM, all benchmarks were run on two NUMA nodes and
assigned all 96 threads. Since two sockets are used, the size
of the DRAM cache is effectively doubled to 384 GB with
6 TB of NVRAM. The total NUMA interleaving and 2 MiB
hugepages were used with no page migration to maximize
performance [18].

To find the baseline data movement required by the algo-
rithms, we configured the NVRAM regions on each socket as
extra NUMA nodes. This is facilitated through the daxctl4

tool with the machine in 1LM. Since Galois uses a NUMA
preferred policy, the threads on each socket will initially

4https://docs.pmem.io/ndctl-user-guide/daxctl-man-pages

https://docs.pmem.io/ndctl-user-guide/daxctl-man-pages


bfs cc kcore
0

10

20

M
ea

n
B

an
dw

id
th

(G
B

/s
)

DRAM Read DRAM Write NVRAM Read NVRAM Write

pagerank
0

20

40

60

(a) Performance of graph kernels on kron30 which fits in DRAM

bfs cc kcore
0

10

20

M
ea

n
B

an
dw

id
th

(G
B

/s
)

pagerank
0

20

40

60

(b) Performance of graph kernels on wdc12 which exceeds DRAM capacity

Fig. 7. Graph kernel performance in 2LM run on 96 threads. When the input
graph does not fit in the DRAM cache, bandwidth significantly drops.

bfs cc kcore
0

2,000

4,000

To
ta

lD
at

a
M

ov
ed

(G
B

)

DRAM Read DRAM Write NVRAM Read NVRAM Write

pagerank
0

2

4

6

·104

(a) NVRAM as extra NUMA nodes.

bfs cc kcore
0

2,000

4,000

To
ta

lD
at

a
M

ov
ed

(G
B

)

pagerank
0

2

4

6

·104

(b) NVRAM as system memory with a DRAM cache.

Fig. 8. Total amount of data moved during the execution of a graph kernel
when the input graph does not fit in the DRAM cache.

allocate memory on that socket’s DRAM. When DRAM is
exhausted, further allocations are serviced by NVRAM. By
summing the traffic to DRAM and NVRAM, we can establish
the baseline memory traffic required by each application.

As with our previous experiments, measurements on band-
width and tag statistics were gathered using hardware perfor-
mance counters.

C. Results

Figure 7 compares the observed bandwidth when running
the graph kernels on kron30 and wdc12. When processing
kron30, the kernels have a working set that largely fits within
the DRAM cache while the working set when processing
wdc12 greatly exceeds the DRAM cache. When the working
set does not fit in the DRAM cache, there is a significant de-
crease in DRAM bandwidth during an algorithm’s execution.

Figure 8 shows the total amount of data moved in the
NUMA and 2LM configurations for NVRAM. Since page

0 20 40 60 80 100 120 140

0

50

100

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read DRAM Write NVRAM Read NVRAM Write

(a) Bandwidth trace for kron30, which largely fits within the DRAM cache.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

0

20

40

60

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read DRAM Write NVRAM Read NVRAM Write

(b) Bandwidth trace for wdc12, which greatly exceeds the capcity of the the
DRAM cache.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

0

0.5

1

Time (s)

B
ill

io
n

Ev
en

ts
/

S

Tag Hit Tag Miss Clean Tag Miss Dirty

(c) Tag trace for wdc12.

Fig. 9. Traces for the pagerank-push algorithm. Figure 9a demonstrates
behavior when the graph largely fits within the DRAM cache. Conversely,
Figures 9b and 9c shows behavior when the working set greatly exceeds the
DRAM cache.

migration was disabled, Figure 8a shows the true demand
accesses of the workload. Comparing this with Figure 8b we
see significant access amplification.

Figure 9 shows the workload characteristics of the pagerank-
push algorithm for both kron30 and wdc12. Figure 9a shows
the algorithm’s bandwidth when its working set largely fits in
the cache. Bandwidth is stable at 70 GB/s with roughly equal
DRAM reads and writes.

On the other hand, Figure 9b demonstrates the bandwidth of
pagerank-push when its working set does not fit in the DRAM
cache. Not only is the average bandwidth significantly lower,
but there is also an excess of DRAM reads coupled with heavy
NVRAM traffic. The tag metrics shown in Figure 9c show the
presence of both clean and dirty tag misses as well as the
correlation between hit rate and DRAM bandwidth.

D. Discussion

As with CNN training, large scale graph processing is a
workload with a high DRAM cache miss rate. This is made
worse since traditional graph algorithm implementations in-
volve mutating the in-memory representation of the graph [18].
In 2LM, this mutation will mark the corresponding memory
as dirty. Thus, not only is the miss rate high, but many of



0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

Time (s)

B
an

dw
id

th
(G

B
/s

) DRAM Read DRAM Write NVRAM Read NVRAM Write

Fig. 10. Memory bandwidth under AutoTM. Samples are averaged over a
2.5 second sliding window to filter high frequency components.

these misses require NVRAM write backs, which we have
demonstrated to be inefficient. As a result, it is not surprising
that 2LM behaves poorly for these particular implementations.

VII. DISCUSSION AND MITIGATION STRATEGIES

In this paper, we demonstrated that the DRAM cache
as currently implemented in Intel’s Cascade Lake systems
performs poorly for applications with a high miss rate. We
showed that a DRAM cache miss can cause 3–5× more
memory accesses than the original demand requests. Further,
we showed that this causes performance degradation in two
bandwidth-limited workloads: CNN training and graph analyt-
ics which are important use cases for NVRAM since they have
extremely large memory footprints. Furthermore, we show that
certain data reuse semantics at the program level can cause
severe degradation.

For instance, in the deep neural network training workload,
a significant amount of the data movement from the DRAM
cache to NVRAM is useless as this data was only meant to
be used temporarily by the program and will be overwritten
before it is read again. This dirty temporary data dominates
the DRAM cache leading to more misses than necessary and
limiting performance to the smaller NVRAM write bandwidth.

A. Software-managed multi-level memory

So what can be done about this? In this section, we look
at an example of software-managed memory for each of the
case studies presented previously: CNNs training and graph
analytics. We show that through software-managed memory,
we can obtain better performance than using the hardware-
managed cache in 2LM mode for these miss heavy bandwidth-
bound workloads.

Software management relies on decoupling the DRAM and
NVRAM memory pools. So far, this paper focused on the
2LM (or “memory mode”) of the NVRAM systems, these
systems can also be configured in “app-direct mode” or 1LM
where the programmer has full control over the data location
and movement. NVRAM is simply mapped into a program’s
address space.

1) CNN Training: Hildebrand et al. showed that for static
compute graphs such as static CNNs, where there is no data
dependent behavior and the structure of the network and sizes
of intermediate tensors are fully known ahead of time, that
software data movement can provide a significant performance
boost over hardware management [22]. This work, AutoTM,
does so by using an integer linear programming and a profile

guided optimizer. AutoTM understands the execution time of
kernels with input and output tensors in various combinations
of DRAM and NVRAM and can manage these locations
and data movement to minimize execution time under a set
DRAM budget. With this knowledge, AutoTM achieves a
1.88×, 2.24×, and 3.10× speedup over 2LM for Inception v4,
ResNet 200, and DenseNet 264 respectively [22].

First, AutoTM is aware of the difference between semanti-
cally live data versus dead data and thus elide the unnecessary
dirty write-backs on the backward. This can be seen in
Figure 10, which shows the trace of bandwidth through out
a single iteration of training for the large DenseNet model
under AutoTM. Contrast this with Figure 5c. AutoTM only
generates NVRAM writes during the forward pass (where it is
storing intermediate activations for use on the backward pass).
Similarly, AutoTM only generates NVRAM reads during the
backward pass. Table II compares the total amount of data
moved for these workloads in 2LM and under AutoTM.
AutoTM generates similar amounts of DRAM traffic, but only
50% to 60% of the NVRAM traffic.

The average read and write bandwidth that AutoTM
achieves is to NVRAM is also significantly higher than that
achieved during 2LM. This is because AutoTM is designed to
read and write to NVRAM in the patterns discussed in Sec-
tion III for achieving high bandwidth. However, the average
bandwidth in Figure 10 does not tell the whole story. Under
AutoTM, tensors are usually moved between DRAM and
NVRAM (and vice versa) synchronously between compute
kernel execution. Therefore, during kernel execution, there
is no data movement. Thus, we are seeing the bandwidth
averaged over times of data movement and times of no data
movement, implying the active bandwidth is much higher.

2) Graph Analytics: As pointed out in Section VI, graph
algorithm implementations in Galois and other graph frame-
works often mutate graph data structure. With NVRAM, this
is an issue due its low write bandwidth (which is further ex-
acerbated by 2LM’s write amplification). To tackle this issue,
the authors of Sage [18] designed that software specifically
with NVRAM in mind. Their key approach is to (as much as
possible) use NVRAM for read only data.

When running algorithms that require tracking state (such
a nodes visited for bfs), an auxiliary DRAM-based data
structure is used. This data structure is greatly compressed
and supplements the read-only NVRAM-based adjacency list.
Mutation is only performed on the auxiliary data structure, and
hence write traffic is only generated to DRAM. To optimize for
multiple sockets, Sage takes advantage of NVRAM’s capacity
to keep a full copy of the graph on both CPU sockets. With
these techniques, they were able to design algorithms 1.87×
faster on average than GBBS and 1.94× faster on average than
Galois in 2LM [18].

This is another example demonstrating the clever software
management can over come the bandwidth limitations of
NVRAM. Conversely, these same limitations are exacerbated
by access amplification caused by the DRAM cache.



TABLE II
COMPARISON OF DATA MOVED AND EXECUTION TIME FOR THREE COMMON CNNS RUNNING IN 2LM AND UNDER AUTOTM. ALL DRAM AND

NVRAM VALUES ARE IN GB.

2LM AutoTM
DRAM Read DRAM Write NVRAM Read NVRAM Write Runtime (s) DRAM Read DRAM Write NVRAM Read NVRAM Write Runtime (s)

Inception v4 8338 4254 1019 919 572 8103 3459 543 473 304
Resnet 200 8565 3914 950 903 514 8565 3316 652 467 229
DenseNet 264 7418 3559 1027 969 524 7419 2947 639 510 169

B. Limitations of software approaches and future directions

Even though the software approaches discussed above pro-
vide some mitigation to the problems of hardware-managed
DRAM caches, these approaches have limitations. These ap-
proaches use the CPU cores to move data via loads and non-
temporal stores. The DMA copy engines in current systems
are designed for I/O data movement and not high bandwidth
movement between different memory technologies. These
DMA devices’ programming models and performance char-
acteristics do not fit the requirements of this data movement.
Additionally, because these approaches use CPUs for data
movement it is difficult to transfer data asynchronously.

Looking forward, future research should concentrate on
providing hardware-software co-design for data movement
between NVRAM and DRAM. If software, with its high
level knowledge of data access patterns, could work with
the hardware, then we could realize the benefits of hardware
acceleration without the limitations presented above.

ACKNOWLEDGMENTS

This work is supported in part by the Intel Corporation and
by the National Science Foundation under Grant No. CNS-
1850566.

We would also like to thank our anonymous reviewers and
members of the Davis Computer Architecture Research Group
(DArchR) for their valuable feedback.

REFERENCES

[1] Scott Beamer. Understanding and improving graph algorithm perfor-
mance. PhD thesis, UC Berkeley, 2016.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia:
A fresh approach to numerical computing. SIAM review, 59(1):65–98,
2017.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners, 2020.

[4] Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn
Koanantakool, Oded Schwartz, and Harsha Vardhan Simhadri. Write-
avoiding algorithms. In 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 648–658. IEEE, 2016.

[5] C. L. Chen and M. Y. Hsiao. Error-correcting codes for semiconductor
memory applications: A state-of-the-art review. IBM Journal of Research
and Development, 28(2):124–134, 1984.

[6] C. Chou, A. Jaleel, and M. K. Qureshi. Bear: Techniques for mitigating
bandwidth bloat in gigascale dram caches. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA),
pages 198–210, 2015.

[7] C. C. Chou, A. Jaleel, and M. K. Qureshi. Cameo: A two-level
memory organization with capacity of main memory and flexibility of
hardware-managed cache. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 1–12, 2014.

[8] Thomas Cormen, Charles Leiserson, Ronald Rivest, and editors Clif-
ford Stein. Introduction to Algorithms. MIT Press, 2001.

[9] Intel Corporation. Optane dc persistent memory brief.
[10] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s

Manual. Intel Corporation, August 2016.
[11] Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram

Bobba, Matthew Brookhart, Avijit Chakraborty, William Constable,
Christian Convey, Leona Cook, Omar Kanawi, Robert Kimball, Jason
Knight, Nikolay Korovaiko, Varun Kumar, Yixing Lao, Christopher R.
Lishka, Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath Narayana,
Adam Procter, and Tristan J. Webb. Intel ngraph: An intermedi-
ate representation, compiler, and executor for deep learning. CoRR,
abs/1801.08058, 2018.

[12] N. S. Dasari, R. Desh, and M. Zubair. Park: An efficient algorithm for k-
core decomposition on multicore processors. In 2014 IEEE International
Conference on Big Data (Big Data), pages 9–16, 2014.

[13] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E.
Blelloch, Phillip B. Gibbons, and Julian Shun. Sage: Parallel semi-
asymmetric graph algorithms for nvrams. Proceedings of the VLDB
Endowment, 13(9), 2020.

[14] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E.
Blelloch, Phillip B. Gibbons, and Julian Shun. Sage: Parallel semi-
asymmetric graph algorithms for nvrams. Proc. VLDB Endow.,
13(9):1598–1613, May 2020.

[15] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. Reducing dram footprint with nvm in facebook. In Proceedings
of the Thirteenth EuroSys Conference, pages 1–13, 2018.

[16] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy,
Sergey Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. Ban-
dana: Using non-volatile memory for storing deep learning models.
Proceedings of Machine Learning and Systems, 1:40–52, 2019.

[17] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav
Pingali. Single machine graph analytics on massive datasets using intel
optane dc persistent memory. Proceedings of the VLDB Endowment,
13(8):1304–1318, 2020.

[18] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav
Pingali. Single machine graph analytics on massive datasets using intel
optane dc persistent memory. Proc. VLDB Endow., 13(8):1304–1318,
April 2020.

[19] GitHub. Graph500. https://github.com/graph500/graph500, 2019.
[20] F. T. Hady, A. Foong, B. Veal, and D. Williams. Platform storage

performance with 3d xpoint technology. Proceedings of the IEEE,
105(9):1822–1833, 2017.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[22] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power,
and Venkatesh Akella. Autotm: Automatic tensor movement in het-
erogeneous memory systems using integer linear programming. In
Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, page 875–890, New York, NY, USA, 2020. Association
for Computing Machinery.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2261–2269,
2017.

[24] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016.

https://github.com/graph500/graph500


[25] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015.
PMLR.

[26] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[27] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi. Unison cache: A
scalable and effective die-stacked dram cache. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 25–
37, 2014.

[28] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram
caches for servers: Hit ratio, latency, or bandwidth? have it all with
footprint cache. SIGARCH Comput. Archit. News, 41(3):404–415, June
2013.

[29] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jangwoo
Kim, Jinkyu Jeong, and Jae W. Lee. A fully associative, tagless dram
cache. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ISCA ’15, page 211–222, New York, NY, USA,
2015. Association for Computing Machinery.

[30] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Falout-
sos, and Zoubin Ghahramani. Kronecker graphs: An approach to
modeling networks. J. Mach. Learn. Res., 11:985–1042, March 2010.

[31] G. H. Loh and M. D. Hill. Efficiently enabling conventional block sizes
for very large die-stacked dram caches. In 2011 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 454–
464, 2011.

[32] Jason Lowe-Power. On Heterogeneous Compute and Memory Systems.
PhD thesis, University of Wisconsin, Madison, 2017.

[33] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Kr-
ishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. Deep learning recommendation model for personalization
and recommendation systems, 2019.

[34] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweigth
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages
456–471, New York, NY, USA, 2013. Association for Computing
Machinery.

[35] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,
Thomas Willhalm, and Grégoire Gomes. Memory management tech-
niques for large-scale persistent-main-memory systems. Proceedings of
the VLDB Endowment, 10(11):1166–1177, 2017.

[36] Alexander Outman. Web data commons - hyperlink graphs. Technical
report, 2017.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999.

[38] Wen Pan, Tao Xie, and Xiaojia Song. Hart: A concurrent hash-
assisted radix tree for dram-pm hybrid memory systems. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 921–931. IEEE, 2019.

[39] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael
Lang. Performance characterization of a dram-nvm hybrid memory
architecture for hpc applications using intel optane dc persistent memory
modules. In Proceedings of the International Symposium on Memory
Systems, MEMSYS ’19, page 288–303, New York, NY, USA, 2019.
Association for Computing Machinery.

[40] Ivy B Peng, Maya B Gokhale, and Eric W Green. System evaluation
of the intel optane byte-addressable nvm. In Proceedings of the
International Symposium on Memory Systems, pages 304–315, 2019.

[41] M. K. Qureshi and G. H. Loh. Fundamental latency trade-off in archi-
tecting dram caches: Outperforming impractical sram-tags with a simple
and practical design. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 235–246, 2012.

[42] Raj K. Ramanujan, Rajat Agarwal, and Glenn J. Hinton. Apparatus
and method for implementing a multi-level memory hierarchy having
different operating modes, February 2 2017.

[43] Anil Shanbhag, Nesime Tatbul, David Cohen, and Samuel Madden.
Large-scale in-memory analytics on intel® optane™ dc persistent mem-
ory. In Proceedings of the 16th International Workshop on Data
Management on New Hardware, DaMoN ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[44] Linda G. Shapiro. Connected component labeling and adjacency
graph construction. In T. Yung Kong and Azriel Rosenfeld, editors,
Topological Algorithms for Digital Image Processing, volume 19 of
Machine Intelligence and Pattern Recognition, pages 1 – 30. North-
Holland, 1996.

[45] Yishu Shen and Zhaonian Zou. Efficient subgraph matching on non-
volatile memory. In International Conference on Web Information
Systems Engineering, pages 457–471. Springer, 2017.

[46] Yossi Shiloach and Uzi Vishkin. An o(logn) parallel connectivity
algorithm. Journal of Algorithms, 3(1):57 – 67, 1982.

[47] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations, 2015.

[48] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-
v4, inception-resnet and the impact of residual connections on learning.
CoRR, abs/1602.07261, 2016.

[49] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and
Alfons Kemper. Persistent memory i/o primitives. In Proceedings of the
15th International Workshop on Data Management on New Hardware,
pages 1–7, 2019.

[50] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swan-
son, and Jisen Zhano. Characterizing and modeling non-volatile memory
systems. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020.

[51] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In Sam H. Noh and Brent Welch, editors, 18th
USENIX Conference on File and Storage Technologies, FAST 2020,
Santa Clara, CA, USA, February 24-27, 2020, pages 169–182. USENIX
Association, 2020.


	Introduction
	Background and Related Work
	Evaluation Methodology and Validation
	Test System
	Evaluation Methodology
	NVRAM Performance Results

	DRAM Cache / 2LM Mode
	Methodology
	2LM Observations
	Dirty Data Optimization
	Discussion

	Case Study 1: Convolutional Neural Networks
	Methodology
	Results
	Problematic Kernels
	Discussion

	Case Study 2: Graph Processing
	Background
	Methodology
	Results
	Discussion

	Discussion and Mitigation Strategies
	Software-managed multi-level memory
	CNN Training
	Graph Analytics

	Limitations of software approaches and future directions

	References

