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Define “tool”

• Software/testbed used in research
• AKA “Infrastructure”

• AKA “Artifacts”

• Stuff needed to generate data for a paper
• Or to prototype an idea

• Architecture: Simulators, emulators, FPGA designs,
actual chips

• PL, OS, etc. have similar things

• What we spend most of our time on



Goal of a good research tool

10,000



How to 
develop a bad 
tool
Some tips and tricks



Create “in-house” tools

• The idea is good enough to have impact on its own!

• Others can easily build on to of your ideas
• It’s simple to recreate all of the details

(it only took you a couple of weeks to build, right?)

• Funders love to pay to recreate others’ work

• There’s no need for anyone to reproduce your results
• Why wouldn’t they trust you? You never make mistakes

• Keeping it in house gives you a competitive advantage
• Research is a competition and a zero-sum game



Don’t follow software best practices

• No one will see your code
• It’s OK that the code is ugly
• “Research-quality” code is a thing, right?
• Monolithic designs are best!

• Who needs version control? 
• You never make mistakes
• Your hard drive will never die

• Don’t write tests or validate
• You’ll never add back a bug you squashed
• No need to check to make sure you model is good

• Don’t write documentation
• You’re the only one who will ever use this tool anyway
• You’ll remember all of these details in 3 years, no problem



Make the tool “open source”

• Force people to register before giving code
• If someone really wants your code, they’ll ask

• Everyone loves registering and waiting for permission

• Provide a tarball of the source
• With the source anyone can build and use the tool

• Why would anyone need anything more than the source?

• Don’t provide a license or use a restrictive license
• Clearly you own all rights to the code

• Or, it’s “open source” so obviously it’s OK to use

• GPL is great because it forces others to be open source (🔥🔥🔥)



Don’t market your tool

• No need to come up with a good name
• Common English words are memorable

• Someone else thought the name was good, let’s copy it!

• Don’t create a webpage
• Domain names are expensive, and IT is mean

• No need to provide context beyond the paper
• Research papers are great documentation

• People love reading PDFs behind paywalls



Stop supporting the tool

• Once your paper’s published, no need to
continue working on the tool
• You’ve gotten everything you need out of it

• Since the paper is accepted, the tool must be perfect

• No one will need help using your tool
• You wrote a perfect tool, there can’t be bugs

• The documentation you wrote is perfectly clear

• People love links to dead webpages
• Extra points if it looks like your webpage was created

in 1995



How NOT to develop a bad tool 

• Do share your tool: Let others use and develop
• Do share your tool as widely and easily as possible!
• Do make your tool open source
• Market your tool anywhere and everywhere

Websites, tutorials, books, videos, etc.

• Do follow software best practices: Make it easy for others to use your tool
• Do use git, good design practices, …
• Do use agile development practices, code review, …
• Do use the most popular tools for your tool

• Do support the tool: Help others use your tool
• Do provide documentation and support
• Do continue development after initial release



Make the tool Capital Open Source

• Include a LICENSE file with all distributions

• Use an OSI approved license (opensource.org)
• Industry prefers more permissive licenses
• Apache v2, BSD are good choices
• Use creative commons for documentation / teaching

• As the project grows, the leadership should mature
• Governance document defining how to make decisions
• Committee for management

• Think about the exit strategy
• Without an exit strategy the project will languish
• Moving under an umbrella
• Startup, nonprofit, etc.



Create a community around a tool

• Foster a community so that others can give back

• Answer questions when they come up
• Mailing list, github issues, slack, etc.

• Provide answers to questions before they come up
• Documentation is hard, but very important

• Document for both users and developers

• readthedocs.org is a great tool

• Include a CONTRIBUTING guide and a CODE-OF-CONDUCT
• Make the community inclusive and accepting

• The broader the community the more impact the tool will have



But how? (From academia)

• (Research) Incentive structure pushes us towards
bad tools
• Bean counters, not fertile soil counters
• Need more recognition:

• Infrastructure papers?
• Awards? Artifact badges are a great start!
• Count commits? Code reviews? Stackoverflow posts?

• Funding is for research not infrastructure
• 3-year grant: papers published in years 2&3
• The experts (students) graduate or end their internships
• Need more “lab techs” in systems research

• Software developers to provide continuity
• Continuing infrastructure development funds



But how? (“Successful” projects)

• What do these projects have in common?
• Significant industry uptake and support

• Most development comes from industry

https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Bringing-an-Open-Source-Project-to-the-Linux-Foundation-LC3-2018.pdf



Virtuous cycle for research?

research projects

produce papers for groups

students
papers

Research funding?

papers



Intertwine tools and research

• What if the tool development leads to research?
and vice-versa

• Satisfy the bean counters
with agile development

• Really hard with
current incentives
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Back down to Earth

• Is your tool the next LLVM?
• Probably not

• But wouldn’t that be cool?!?!

• Develop like it is the next big thing

This will help you in your research,
help the community’s research,
help scientific progress,
and increase the impact of your tool
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Common arguments for bad tools

• I might be embarrassed
• It’s “research quality”...

• Some one might find a bug

• What if my research is invalidated???

• Company will expose IP
• Then why are you publishing?

• Faster to develop a bad tool
• True, but what about a few years from now?


