
Investigating Hardware Caches for Terabyte-scale NVDIMMs
Julian T. Angeles
CS Dept., UC Davis

jtangeles@ucdavis.edu

Mark Hildebrand
ECE Dept., UC Davis

mhildebrand@ucdavis.edu

Venkatesh Akella
ECE Dept., UC Davis
akella@ucdavis.edu

Jason Lowe-Power
CS Dept., UC Davis

jlowepower@ucdavis.edu

1 INTRODUCTION
NVDIMMs based on 3DXpoint (such as Optane DC Persistent Mem-
ory Module) are emerging as an attractive option to address the
needs of emerging applications that requires tens of terabytes of
memory such as graph analytics and machine learning. To mitigate
the increased latency and reduced bandwidth of NVDIMMs, in Intel
systems, a smaller capacity DRAM serves as a cache to the larger
capacity NVRAM in the so called 2LM mode (also known as mem-
ory mode or cached). Alternatively, the NVRAM devices can also
be explicitly managed in the 1LM (or app direct) mode requiring
application changes to take advantage of DRAM. Prior work has
evaluated the system-level and device-level performance of Optane
DC [4, 6]. Additionally, other works including Dhulipala et. al [1]
and Gill et. al [2] evaluate the performance of large scale graph
analytics on NVRAM based systems focusing on application perfor-
mance evaluation and optimization but do not delve into the details
of behavior of the DRAM cache (the 2LM mode) performance.

In the past, DRAM caches have been studied in the context of
die-stacked systems [5] where the goal was to use a few gigabytes
of stacked DRAM as a giant last-level cache mainly to overcome
the bandwidth limitation of going off chip. However, the purpose
of DRAM caches in a NVRAM based system is different. Instead of
a few gigabytes, the DRAM cache in Intel’s Cascade Lake systems
can easily be 384 GB with 6 TB of backing main memory. This cache
is about two orders of magnitude larger than previously studied
DRAM caches. So, we are motivated by the question: how well do
block-based die-stacked era DRAM caches work in NVRAM based
systems and what are their limitations?

The goal of this work is to provide initial answers to this question
by taking a deep dive into the performance of 2LM based systems
using a real hardware and the built-in performance counters. We fo-
cus our study on large scale graph processing for two reasons. First,
this represents a “growing” workload with today’s large graphs
already requiring many terabytes of RAM. Second, these workloads
have irregular memory access patterns that are difficult to predict
(e.g. with software managed approaches). We show that the cur-
rent DRAM cache implementation (which is a naive direct mapped
cache) performs poorly on graph workloads and does not take full
advantage of the available bandwidth while generating a significant
amount of unnecessary traffic. Further, we argue that designing
hardware managed DRAM caches is an important problem that the
computer architecture should address.

2 EXPERIMENTS
Our test machine is a two-socket Xeon server equipped with 24-
core Cascade Lake engineering sample CPUs. Each socket has two
integrated memory controllers (IMC) with three memory channels
populated containing a 32 GiB DDR4 DRAM DIMM and a 512 GiB
Optane DC DIMM for a total of 384 GB DRAM and 6 TB NVRAM.

(a) Performance of graph kernels on kron30 which fits in DRAM

(b) Performance of graph kernels on wdc12 which exceeds DRAM ca-
pacity

Figure 1: Average DRAM and NVRAM bandwidth.
All experiments were run using the shared memory graph ana-
lytics framework Galois. Gill et al. evaluated Galois, GBBS, and
GAPBS on Optane and found that because of NUMA-aware mem-
ory allocation at the application level, kernel overhead avoidance,
and asynchronous graph algorithms Galois performed the best [2].
Our evaluations consisted of 4 benchmarks from the lonestar suite:
breadth-first search (bfs), connected components (cc), k-core de-
composition (kcore), and pagerank-push (pr).

We used two realistic unweighted massive input graphs: wdc12,
the largest publicly available graph, and kron30, a randomized scale
free graph generated using a graph500 based kronecker generator.
Each were chosen to highlight the differences between when a
graph fit and did not fit in the DRAM cache. All measurements
were gathered using hardware performance counters.

Poor Bandwidth Utilization with High Miss Rates. Our first obser-
vation is that when the working set of the application does not fit
in the DRAM cache the bandwidth to both NVRAM and DRAM is
severely underutilized. Figure 1a shows the average bandwidth for
a graph which fits in the cache and Figure 1b shows the average
bandwidth for a graph that exceeds the cache capacity. The graph
which does not fit in the cache causes a 50% reduction in band-
width for DRAM. This is due to three related problems: there are
many cache misses which require waiting on high-latency NVRAM,
many of the DRAM misses cause NVRAM writes, and the NVRAM
accesses are fine-grained further increasing their latency.

To further understand the cause of this bandwidth reduction,
we captured the bandwidth over time and cache hit rate for the
pagerank-push algorithm when the input graph fits or exceeds
the capacity shown in Figure 3. Figure 2a shows the algorithm’s
bandwidth when its working set largely fits in the cache. Bandwidth
is stable at 70 GB/s with roughly equal DRAM reads and writes. On
the other hand, Figure 2b demonstrates the bandwidth of pagerank-
push when its working set does not fit in the DRAM cache. Not



Julian T. Angeles, Mark Hildebrand, Venkatesh Akella, and Jason Lowe-Power

(a) Bandwidth trace for kron30, which largely fits within the DRAM
cache.

(b) Bandwidth trace forwdc12, which greatly exceeds the capcity of the
the DRAM cache.

(c) Tag trace for wdc12.
Figure 2: Detailed traces for the pagerank-push algorithm.

Figure 3: The total data moved when the input graph ex-
ceeds the capacity of the DRAM cache in 2LM relative to the
NUMA baseline.
only is the average bandwidth significantly lower, but there is also
an excess of DRAM reads coupled with heavy NVRAM traffic. The
tag metrics shown in Figure 2c show the presence of both clean
and dirty tag misses as well as the correlation between hit rate
and DRAM bandwidth. As graph kernels often mutate graph data
structures, this is especially a problem given the higher costs of
writes than reads on NVRAM devices.

Significant unnecessary data movement. Our second main observa-
tion is that when using the DRAM as a cache of NVRAM the total
data movement significantly increases. By comparing with the base-
line data movement required by each algorithm, we find that the
DRAM caches suffer from access amplification, generating unnec-
essary data movement and reducing the bandwidth utilization. To
find these baselines, we configured the NVRAM regions on our two
socket system as extra NUMA nodes. Since Galois uses a NUMA
preferred policy, the threads on each socket will initially allocate
memory on that socket’s DRAM. When DRAM is exhausted, fur-
ther allocations are serviced by NVRAM. By summing the traffic to

DRAM and NVRAM, we can establish the baseline memory traffic
required by each application, such that we can observe if and by
how much unnecessary data is moved with DRAM caches.

Figure 3 shows the relative total amount of data moved in the
NUMA and 2LM configurations for NVRAM. Since page migration
was disabled, we observe the true demand accesses of the workload.
Compared to the baseline, we see significant increase of data be-
ing moved across all graph kernels. We argue that the block-level
movement used with DRAM caches contributes to this effect.

3 DISCUSSION
In this work, we show that the current DRAM cache implementation
performs poorly for applications with a high miss rate. We also
show that a miss in the DRAM cache generates significantly more
data movement than is necessary. Further, we show that this causes
performance degradation in bandwidth-limited workloads such as
large graph analytics which is an important use case for NVRAMs
since they have extremely large memory footprints.

Previous efforts have looked to mitigate these overheads by
providing input from either the programmer or compiler. The au-
thors of Sage [2] designed their graph framework specifically with
NVRAM in mind. Their key approach is to (as much as possible) use
NVRAM for read only data. Similarly, in prior work (AutoTM [3]),
we showed that for static compute graphs such as static CNNs, that
software data movement can provide a significant performance
boost over hardware management. AutoTM achieves a 1.88×, 2.24×,
and 3.10× speedup over 2LM for Inception v4, ResNet 200, and
DenseNet 264 respectively [3].

That being said, both examples require explicit data management
by software. As future research, we present a challenge to the
community: how do we design a solution that is both implicit
(like hardware caches) and high performance (like explicit
data movement)? This mechanism likely requires flexibility for a
variety of different workloads with different data resuse patterns
and the ability to track coarse granularity data movement to reduce
the amount of metadata necessary. Another interesting research
direction is to specialize the cache designs for specific workloads,
such as graph processing or training deep neural networks. We are
excited to see the potential future of this space.

REFERENCES
[1] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch,

Phillip B. Gibbons, and Julian Shun. 2020. Sage: Parallel Semi-Asymmetric Graph
Algorithms for NVRAMs. Proceedings of the VLDB Endowment 13, 9 (2020).

[2] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali.
2020. Single Machine Graph Analytics on Massive Datasets Using Intel Optane
DC Persistent Memory. Proc. VLDB Endow. 13, 8 (April 2020), 1304–1318.

[3] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh
Akella. 2020. AutoTM: Automatic Tensor Movement in Heterogeneous Memory
Systems Using Integer Linear Programming. In ASPLOS 2020.

[4] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic PerformanceMeasurements of the Intel Op-
tane DC Persistent MemoryModule. CoRR abs/1903.05714 (2019). arXiv:1903.05714

[5] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi. 2014. Unison Cache: A Scalable
and Effective Die-Stacked DRAM Cache. In MICRO 2014.

[6] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jisen Zhano. 2020. Characterizing and Modeling Non-Volatile Memory Systems.
In MICRO 2020.

https://arxiv.org/abs/1903.05714

	1 Introduction
	2 Experiments
	3 Discussion
	References

