
Validating gem5’s Memory Components
Mahyar Samani, Jason Lowe-Power

Architecture simulators are a common and powerful tool
in computer architecture design. It is important that results
reported by simulators are trustworthy. The accuracy of
simulators should be evaluated by comparing their reported
statistics and results to their counterparts in real hardware.
We will present our methodology and tools for evaluating
gem5’s memory subsystem components and the results of our
validation of gem5’s current memory system components.

I. METHODOLOGY

The methodology focuses on isolating the component under
test from other components in the system. We only focus
on the components of the memory subsystem (i.e. DRAM
and cache). Moreover, for each component, we only consider
measurements that directly effect the performance of other
components in the system. To that end, we use bandwidth
and average latency as the metric for comparison. We use
synthetic traffic to stress each component to factor out any
inaccuracy that might originate from processor models. We
use DRAMSim3 as the reference of comparison in validating
DRAM models. DRAMSim3 is a cycle accurate memory
simulator that has been validated by comparing against real
hardware. In addition, DRAMSim3 has already been integrated
to work work with gem5.

II. TOOLS AND UTILITIES

We use gem5’s builtin synthetic traffic generators, PyTraf-
ficGen, and our new traffic generator, GUPSGen, to generate
different types of traffic and measure bandwidth and average
latency of accesses.

PyTrafficGen provides a configurable interface for creating
synthetic traffic. It can create sequential and random access
patterns with configurable demand bandwidth, access range,
and access granularity.

We developed GUPSGen to create traffic specified by HPCC
RandomAccess benchmark. It will execute a key-value store
program without the need for a processor model in the system.
RandomAccess benchmark has been recognized as a common
benchmark for the memory subsystem.

III. VALIDATING DRAM MODELS

To evaluate DRAM models, we use different configuration
of PyTrafficGen (e.g. demand bandwidth, access pattern, ac-
cess range) and DRAM models (e.g. address mapping, paging
policy) and use bandwidth and average latency measurements
as metrics to compare gem5’s models with respective models
in DRAMSim3. We validated the accuracy of DRAM models
in gem5. Figure 1 shows a comparison of bandwidth readings
from a DDR4 model between gem5 and DRAMSim3.

RoRaBaChCo RoRaBaCoCh RoCoRaBaCh
Address Mapping

0

2

4

6

8

10

12

14

16

R
e

a
d

 B
a

n
d

w
id

th
 (

G
B

/s
)

Open Page

RoRaBaChCo RoRaBaCoCh RoCoRaBaCh
Address Mapping

R
e

a
d

 B
a

n
d

w
id

th
 (

G
B

/s
)

Close Page

gem 5

DRAMSim 3

Fig. 1. Comparison of DDR4 in gem5 and DRAMSim3 under linear traffic.
gem5 measurements are within 5% of DRAMSim3 measurements.

IV. VALIDATING RUBY CACHES

We validate the accuracy of a two level cache hierarchy set
up using Ruby caches. We use SimpleMemory as a determinis-
tic model for the backing DRAM of the tested cache hierarchy.
Using SimpleMemory allows us to isolate the cache hierarchy
without the requirement for a validated memory model. We
validate bandwidth and average latency measurements under
different traffic patterns that cause different hit rates in each
level of the cache hierarchy. Figure 2 shows the effect of
working set size on measured bandwidth and average latency.

Next, we configure a cache hierarchy using available in-
formation on Intel Skylake architecture. To create a complete
memory subsystem we use a validated DDR4 model as the
main system memory. We use GUPSGen to measure the
performance of the memory subsystem and compare the results
to the readings from real hardware.

V. CONCLUSION

Overall, we validate the accuracy of DRAM models in gem5
and report a 10% difference between GUPS measurements
from our tested cache hierarchy and real hardware.

0 250 500 750 1000 1250 1500 1750 2000

Range (KiB)

0

10

20

30

40

50

60

70

R
e

a
d

 l
a

te
n

cy
 (

n
s)

0

200

400

600

800

1000

R
e

a
d

 B
W

 (
G

B
/s

)

L1/L2L1 L1/L2/DRAM

Fig. 2. Effect of hierarchical memory on access latency and bandwidth.


