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ABSTRACT

The DINO CPU is an open source teaching-focused RISC-V CPU de-
sign available on GitHub (https://github.com/jlpteaching/dinocpu).
We have used the DINO CPU in the computer architecture course
at UC Davis for two quarters with two separate instructors. In this
paper, we present details of the DINO CPU, the tools included with
the DINO CPU, and our experiences using the DINO CPU.
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1 INTRODUCTION

This paper introduces the UC Davis In-Order (DINO) CPU. We
have designed the DINO CPU for use in our senior-level computer
architecture course (ECS 154B) which covers performance modeling,
pipeline design, and memory systems.

In our computer architecture course, we use a set of four to five
assignments over a 10 week quarter that ask the students to imple-
ment an in order CPU pipeline. In the past, we asked the students
to implement their hardware design in Logisim [4]. Some students
have found Logisim frustrating and lacking in resources, with com-
plaints such as “there isn’t much documentation on Logisim online”
and “T hate logisim with a passion” Additionally, Logisim limited
the complexity of the design we could ask students to create (e.g.,
the maximum register size is 32 bits), and it was very difficult to test.
Finally, it was nearly impossible to execute any real applications
on students’ design in Logisim which limited its use for comparing
different architectural design decisions.

In order to move away from Logisim and enable more complex de-
signs, we implemented a single cycle and a five stage pipelined CPU
in a hardware description language (HDL). The instructors of the
computer architecture courses at UC Davis have long desired to use
a HDL instead of Logisim; however, tools that supported existing
HDLs were significantly larger in size or supported many unneeded
features. We chose to implement the DINO CPU in Chisel [3], a
domain-specific language written in Scala. Using Chisel instead of
Verilog or other low-level HDLs allowed the instructors to more
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quickly and easily implement tests, write simulators, and use auto-
graders. Additionally, we designed the DINO CPU for a computer
science class with the knowledge that the students are familiar with
object oriented languages than HDLs.

The main features of DINO CPU are

e A single cycle processor design (Section 2.2)

o A five stage pipelined processor design with full forwarding
and hazard detection (Section 2.3)

o Nearly full support for 32-bit RISC-V integer (rv321i) instruc-
tion set allowing for many C programs to be compiled and
executed without modifications

e A suite of tests including unit tests for each component,
instruction tests, and small benchmarks (Section 3.1)

e An RTL simulator interface for debugging (Section 3.2)

We have used the DINO CPU for two quarters at UC Davis in our
Computer Architecture class (ECS 154B). So far, the students’ feed-
back has been generally positive. From our feedback, we received
comments such as “Very challenging but rewarding course. Please
keep using Chisel in the future!” Additionally, after teaching this
course for the first time, one student reported that they received
an internship offer because they had Chisel experience.

So far, we have designed a set of four assignments based around
the DINO CPU. In the first assignment, to expose the students to
Chisel and hardware design languages, we ask the students to im-
plement a simple ALU control unit and wire part of the CPU data
path. In the second assignment, we have the students extend their
code to a full single cycle RISC-V processor which successfully
executes full RISC-V applications. The third, and most challeng-
ing, assignment has the students create a pipelined CPU with full
forwarding and hazard detection. In the fourth assignment, the
students add a branch predictor to the pipeline, implement two
different kinds of branch predictors, and compare the performance
of different processor designs.

For each of these assignments, we gave the students a code tem-
plate to ensure there was a common framework for their imple-
mentations. By giving the students a template, we were also able to
leverage autograder software since all student solutions used the
same interfaces.

All assignments were tested on real RISC-V binaries created with
an unmodified GCC toolchain. Most of these binaries were simple
instructions tests with only one or a few instructions until the third
assignment. In the third and fourth assignments, the students ran
full workloads written in C on their CPU designs through our Scala-
based simulator culminating in an assignment which compared
and contrasted different hardware design decisions on cycle time,
complexity, and performance.

The rest of this paper is organized as follows. First, in Section 2
we explain the goals of the DINO CPU, details of the DINO CPU’s
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design, and our four assignments. Then, in Section 3 we describe
the tools included with the DINO CPU to enable its use in the
classroom. In Section 4 we detail our experience and the lessons
learned while using the DINO CPU in the last two quarters at UC
Davis. Finally, Section 5 concludes.

2 DINO CPU

2.1 Overall goals and non-goals

Our goal in creating the DINO CPU is to use the code to teach
senior-level computer science undergraduates details of in-order
processor design. We use the public version of DINO CPU as a basis
for four to five CPU design assignments. Our main goals for DINO
CPU are:

o Simple design and easy to teach

e Implement enough of the RISC-V ISA to compile and run
real C programs

o Clean and understandable code

To make the design easy to teach, we decided to closely follow
the design in the RISC-V edition of the Patterson and Hennessy
Computer Organization and Design book [7]. This allowed us to
refer to the book for the reasons behind design decisions. We did this
with minimal modifications for both the single cycle and pipelined
designs.

There are a number of common hardware design goals that we
explicitly forego in the design of the DINO CPU. We did not try to
design a high performance CPU in terms of low CPI or fast cycle
time. Instead, we focused on readability and pedagogical design.
We also have not investigated emulating the design on FPGA or
implementing the design with EDA tools.

Finally, the DINO CPU does not implement a fully compatible
RISC-V CPU design. Specifically, we do not support most of the
privileged instructions, the CSR instructions, or ecall and ebreak.
We would like to support these instructions and enable machine
mode so we can run a more diverse set of workloads (e.g., workloads
with system calls like printf). However, we will focus on adding
this feature in a modular way which does not affect the overall
complexity of the control or the data path.

Chisel [3] is an emerging hardware design language. It is a
domain-specific language written in Scala. We considered using
Verilog; however, we chose Chisel for three main reasons. First, it
is a more familiar programming interface for our predominately
computer science students allowing them to concentrate on the
hardware design and not on syntax. Second, we found it straightfor-
ward to integrate Chisel with autograding software. Finally, Chisel
is easier to parameterize for many different designs which allows
us to use the same interfaces for multiple CPU designs and different
design variations.

Chisel is becoming increasingly popular in industry. Google
recently announced they designed the edge TPU in Chisel [6], the
fabless semiconductor startup SiFive uses Chisel, and many other
companies are investigating Chisel.

2.2 Single cycle CPU design

The single cycle CPU design in the DINO CPU closely follows the
design in the RISC-V edition of the Patterson and Hennessy (P&H)
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1 class SingleCycleCPU extends Module {

2 val io = IO(new CoreIO())

3 val pc = RegInit(0.U)

4 val control = Module(new Control())

5 val registers = Module(new RegisterFile())

6 val aluControl = Module(new ALUControl())

7 val alu = Module(new ALU())

s val immGen = Module(new ImmediateGenerator())
9

val branchCtrl = Module(new BranchControl())
10 val pcPlusFour = Module(new Adder())
11 val branchAdd = Module(new Adder())

13 io.imem.address := pc

15 pcPlusFour.io.inputx := pc
16 pcPlusFour.io.inputy := 4.U

18 val instruction = io.imem.instruction

19 immGen.io.instruction := instruction

20 control.io.opcode := instruction(6,0)

21

22 registers.io.readregl := instruction(19,15)
23 registers.io.readreg2 := instruction(24,20)
24 registers.io.writereg := instruction(11,7)

25 registers.io.wen := control.io.regwrite
26

27 aluControl.io.add := control.io.add

28 aluControl.io.immediate := control.io.immediate
29 aluControl.io.funct? := instruction(31,25)
30 aluControl.io.funct3 := instruction(14,12)
31

32 when (control.io.alusrcl === 0.U) {

33 alu.io.inputx := registers.io.readdatal

3¢ } .elsewhen (control.io.alusrcl === 2.U) {

35 alu.io.inputx := pc

3 + .otherwise {

37 alu.io.inputx := 0.U

38}

39 alu.io.inputy := Mux(control.io.immediate,

40 immGen.io.sextImm, registers.io.readdata2)
41 alu.io.operation := aluControl.io.operation

control.io.branch
instruction(14,12)
registers.io.readdatal
registers.io.readdata2

43 branchCtrl.io.branch
44 branchCtrl.io.funct3
45 branchCtrl.io.inputx
46 branchCtrl.io.inputy

alu.io.result
registers.io.readdata2
control.io.memread
control.io.memwrite
instruction(13,12)

48 io.dmem.address
49 io.dmem.writedata
so0  io.dmem.memread
51 io.dmem.memwrite
sz io.dmem.maskmode

53 io.dmem.sext ~instruction(14)

54

s5  when (control.io.toreg === 1.U) {

56 registers.io.writedata := io.dmem.readdata
s7 } .elsewhen (control.io.toreg === 2.U) {

58 registers.io.writedata := pcPlusFour.io.result
59 } .otherwise {

60 registers.io.writedata := alu.io.result
61}

62

63 branchAdd.io.inputx := pc

64 branchAdd.io.inputy := immGen.io.sextImm

65 when (branchCtrl.io.taken ||

66 control.io. jump === 2.U) {

67 pc := branchAdd.io.result

68 } .elsewhen (control.io.jump === 3.U) {

69 pc := alu.io.result & Cat(Fill(31, 1.U), 0.U)
70} .otherwise {

71 pc := pcPlusFour.io.result

72

73}

Listing 1: Single cycle RISC-V CPU data path. Highlighted
lines show restricted data path for R-type only instructions.
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Figure 1: Single cycle RISC-V CPU diagram. Highlighted wires show restricted data path for R-type only instructions.

book [7]. There are two main differences between the DINO CPU
design and the design detailed in the book. First, we rename some of
the control signals. This is a small detail that does not affect the ped-
agogical design of the processor, but does decrease the prevalence
and ease of cheating on future versions of this assignment. Second,
since the DINO CPU implements all of the RISC-V instructions,
some components require more hardware than presented in the
original design. For example, the book only implements four of the
ten R-type instructions.

In the largest deviation from the P&H design, we split the branch
logic into its own unit (the branch control unit). However, this
deviation is not a requirement. In our second offering of the class
using the DINO CPU, we calculated the comparison flags in the
ALU and passed them to the branch control unit instead of having
the branch control unit do the calculations. This is an example of the
flexibility of our design and an example of how minor modifications
can enable high re-usability in the classroom of this design by
discouraging copying code from previous offerings.

To simplify the code base, the DINO CPU makes heavy use of
the modularity and encapsulation available in Chisel. Each of the
modules in boxes in Figure 1 are their own Chisel class with a
set interface (shown as the input/output in the figure). By using
this modularity, the code for the data path shown in the figure is
quite simple: only about 70 lines of code as shown in Listing 1. In
the main CPU file, the students only need to instantiate all of the
modules (we suggest giving them this in the template to ensure
consistent naming), add any necessary multiplexers, and connect
the wires.

Similarly, each of the modules can be tested on their own, and
we provide the students with unit tests for each module. Thus, if the
students pass the unit tests for each module and have wired the CPU
correctly, then all of the applications will work correctly. In practice,
we found that our initial set of unit tests did not have complete
coverage, and we are currently working to improve this coverage.
Improving the test coverage is discussed more in Section 4.2.

We used this single cycle design for the first and second assign-
ments in our classes. The first assignment asks the students to create
the ALUControlUnit logic to determine the ALU operation based
on the only funct7 and funct3 bits of the instruction. Additionally,
in the first assignment the students must wire the data path for
R-type instructions (highlighted in Figure 1 and Listing 1). In this
assignment, the students did not need to implement the control
unit or add any multiplexers.

For the second assignment, the students were asked to implement
the rest of the data path shown in Figure 1 and the logic in the
control unit. We supplied the students with a simple outline which
included lines 1-13 and line 18 in the code above. We also supplied
the logic for all modules except the ControlUnit. The students’
data path designs were tested with single instruction tests and with
full applications as discussed in Section 3.1.

During the second time we used this set of assignments, we
made minor changes to the data path so the solution would not be
exactly the same between classes. For this class, we integrated the
branch control logic into the ALU, similar to the original design in
the Patterson and Hennessy book.

There are many other ways to make minor modifications to the
data path or the signals which will produce a correct RISC-V CPU,
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1 class IFIDBundle extends Bundle {
2 val instruction = UInt(32.W)

3 val pc = UInt(32.W)

4 val pcplusfour = UInt(32.W)
57}

6 class EXControl extends Bundle {
7 val add = Bool ()

s val immediate = Bool()

9 val alusrci = UInt(2.W)

10 val branch = Bool()

1 val jump = UInt(2.W)

12}

13 class MControl extends Bundle {
14}

15 class WBControl extends Bundle {
16 }

17 // Pipeline registers

18 class IFIDBundle extends Bundle {
19 }

20 class IDEXBundle extends Bundle {
21 val excontrol = new EXControl

22 val mcontrol = new MControl

23 val wbcontrol = new WBControl

24 }

25 class EXMEMBundle extends Bundle {
26 val mcontrol = new MControl

27 val wbcontrol = new WBControl

28 }

29 class MEMWBBundle extends Bundle {
30 val wbcontrol = new WBControl
31 )

Listing 2: Template Chisel code for control bundles and
pipeline registers. Students are required to fill in missing
control signals.

but make the Chisel code significantly different. As we continue
using these assignments, we plan on making small changes to the
CPU for each class.

2.3 Pipelined CPU design

Figure 2 shows the design of the baseline pipelined CPU. We also
have a second version of this design with a branch predictor for the
fourth assignment. This design supports full forwarding between
writeback and memory to execute and hazard detection for load to
use hazards and branch hazards.

The pipelined CPU uses all of the same modules from the single
cycle design. The differences are the data path, which now includes
pipeline registers and the forwarding and hazard detection units.

In the third assignment, we provided the students with outlines
for the pipeline registers as shown in Listing 2, but did not specify
the required control signals. The first step in the assignment was to
fill in the pipeline registers with the required signals. This is a good
example of the benefits of Chisel’s modularity compared to using
Verilog. The students were able to concentrate on one aspect of
the design at a time (e.g., first deciding the required signals before
writing the data path logic).

After specifying the signals in each pipeline register, the students
implemented the pipeline without forwarding or hazard detection.
We provided the students with a set of applications (about 50, most
of which had a single instruction) which would correctly execute
even without forwarding and hazard detection. Once they were
able to correctly execute these tests, the students had confidence
their data path logic was correct.

In this part, the students struggled the most with correctly up-
dating the PC. The students tried to update the PC in the writeback
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stage instead of during the fetch stage even though this was spec-
ified on the diagram they were given (Figure 2). We believe this
struggle was actually a good thing because instead of struggling
with the tools or how to wire simple parts of the design, the stu-
dents were struggling with the concept of pipelined designs. In many
cases, after coming to office hours and asking questions about how
pipelining works, the students were able to successfully complete
the assignment. 95% of students in successfully completed this part
of the assignment between the two times this assignment was used.

For the next part of the assignment, the students implemented
full forwarding and hazard detection in the pipeline. The pipeline
diagram the students were given contained all of the required wires,
but it did not have the forwarding or hazard detection logic; the
students had to consult the book or work it out on their own. The
forwarding logic exactly matched the textbook, but the hazard
detection logic was slightly different.

Similar to the first part, we supplied a set of applications which
required forwarding (about 15) and another set of applications
that required both forwarding and hazard detection (about 10).
These were more complicated applications, usually containing a
few instructions. 72% of the students successfully passed these tests.

Finally, we also provided the students with six full applications
from the RISC-V test suite, which contained 100s of instructions
and ran for 5,000-50,000 cycles. These were a multiply, median,
quicksort, radix sort, towers, and vector-vector addition.

Many students failed to correctly execute these full applications
on their pipeline design, which caused significant frustration. Only
around half (57%) of the students executed all of the full applications
successfully. We believe the main reason students were unsuccess-
ful in this part of the assignment because the previous tests and
applications did not cover all possible corner cases. When these
large applications failed, it was very difficult to debug the exact
problem. We are currently focusing on improving debugging sup-
port and adding more tests to cover the common mistakes found in
the full application tests.

3 TOOLS INCLUDED WITH DINO CPU

We distribute a number of tools with the DINO CPU to enable
students to use Chisel and develop the DINO CPU quickly. Chisel
is a Scala-based language with a number of dependencies. Down-
loading these correctly is potentially error prone. We did not want
to spend a significant amount of time in office hours or on online
forums debugging the system configuration.

Therefore, we distribute a Singularity container [5] which con-
tains all of the necessary software to develop, build, and test the
DINO CPU. We chose to distribute a Singularity container instead
of a Docker container to the students because our IT staff did not
allow Docker for security reasons. This container contained the
exact versions of Scala, Java, Chisel, and its dependencies the in-
structional staff used to develop the assignments so there would be
no possibility of misconfigured software.

Using the container interface was relatively simple, although
not painless. On Linux, working with the DINO CPU through Sin-
gularity was as simple as running a single command: singularity
run library://jlowepower/default/dinocpu. This command
will download the container image from Singularity Hub [8] and
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Figure 2: Pipelined RISC-V CPU diagram.

drops the user into the Scala Build Tool shell, which allows them
to build, test, and run the DINO CPU simulator.

For students not using Linux (i.e., MacOS or Windows), they
cannot directly use Singularity and must use a virtualized Linux
environment. To make this simple, we distribute a Vagrant Box
that contains all of the needed Linux tools for Singularity. Thus,
on MacOS and Windows, the students had one extra step. Before
running the container as above, they must start the Vagrant Box
with vagrant up && vagrant ssh. Although there was some initial
confusion on the first assignment with the tools, the students did
not cite the tools as a point of frustration on any other assignment.

There were a few downsides to using this container/virtualization
approach. The biggest downside to using Vagrant and Singularity is
that on MacOS and Windows building the DINO CPU and simulat-
ing it was quite slow under default VirtualBox settings; increasing
resources to 2 GB and 2 cores for the VM showed dramatic improve-
ments. Also, the Singularity image was a 320MB file which took a
significant fraction of our students’ filesystem quota on our shared
lab machines. Finally, requiring the students to use the command
line interface on the Singularity container meant they could not
use an IDE which would have made Chisel coding easier.

We decided not to include the entire RISC-V development tool-
chain (e.g., gcc, as, objdump, etc.) in our Singularity images. The
main reason was that these tools take a significant amount of disk
space ( 500 MB) and the images were already very large. Addition-
ally, by not distributing the toolchain and requiring the students

to use the provided binaries, we reduced the possibility of broken
binaries causing tests to fail.

We also include a Dockerfile and code to autograde all of the
assignments on Gradescope. This Dockerfile sets up an image with
exactly the same versions of all dependencies as the Singularity
container. We also have scripts to run the tests on Gradescope, and
distribute a library which creates Gradescope compatible output.
Finally, in our source repository, we have detailed documentation
on using DINO CPU with autograders.

3.1 Testing support

We provide three different kinds of tests in DINO CPU to help the
students and other developers test their designs: unit tests, simple
instruction tests, and application tests.

Unit tests are modeled after Chisel unit tests and test a single
component in isolation. We have unit tests for each of the units
that we give to the students (e.g., ALU, memory, register file) and
the units which the students design (e.g., the ALU control unit).

Unit tests are mostly helpful when designing the assignments
and making updates to the DINO CPU infrastructure. We found it
difficult for the students to effectively use these simple component-
wise unit tests. In the future, as we require the students to fill in
the logic for different units, these tests may be more useful.

We also constructed general CPU integration tests. These tests
take a RISC-V binary, initial register values, and initial memory
values as inputs as well as final register and memory values. Then,
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the tester loads the binary into the simulator, simulates the CPU
(either the single cycle or the pipelined design) for a set number
of cycles. Finally, the tester compares the final register values and
memory values to the correct values to generate the result.

We have two kinds of application tests: simple and full applica-
tions. Many of the simple application tests are just a single instruc-
tion (e.g., add1 above is simply add t1, zero, t@ # (regl[6] = ©
+ reg[5])). The full application tests range from simple assembly
functions (e.g., swap using xors) to benchmarks (e.g., towers).

For simplicity, we distribute the RISC-V binaries built with the
mainline of the RISC-V toolchain. We also distribute the RISC-V
assembly source files so students can examine the assembly when
the applications fail. In practice, we found the students rarely looked
at the source code for failing applications and instead focused more
on examining the output of the simulator.

Most of our tests are written in RISC-V assembly code; however,
some of the benchmarks are written in C. As part of the DINO CPU
distribution, we also include makefiles and loader files that will
take RISC-V assembly and simple C code and create a RISC-V ELF
binary that is compatible with our simulator, described next.

3.2 Debugging support

We also provide a Scala-based simulator and debugger with the
DINO CPU. The simulator is based on Treadle [2] which is an circuit
simulator that executes Firrtl IR written in Scala.

Our simulator loads RISC-V ELF files and can initialize registers
and memory. It loads a subset of the symbols in the ELF file (. text
and .data) into the simulated memory. It loads these symbols
by parsing the ELF file and then writing a new text file which
is loaded by the Chisel loadMemoryFromFile utility. The loader
scripts distributed with DINO CPU ensure that all code and data
are in these ELF sections.

Then, from a very simple read, execute, print loop (REPL), users
can step through the application cycle by cycle. At each step, a
subset of the CPU’s state is dumped to the terminal. This state can
be set by using printf in the Chisel code giving computer science
students a familiar “printf debugging” interface. By default, we print
the values of each of the pipeline registers, as shown in Listing 3.

Improving the debugging support by providing a more full fea-
tured REPL is high priority as debugging difficulty was one of the
main pain points in the students’ feedback “ The output of Chisel
is very difficult to read, so I cannot easily debug my program. ”

4 EXPERIENCE USING DINO CPU

Overall, we believe that DINO CPU infrastructure has succeeded
at providing our students with an infrastructure to learn about
tradeoffs in architectural design and details of pipelined processor
control. Initially developing the DINO CPU infrastructure was a
significant undertaking. This was our first experience with many
of the tools including Chisel. However, after this initial investment,
we have found that using DINO CPU in other classes is significantly
less work.

4.1 Other instructor experience

As mentioned earlier, we have used the DINO CPU in two offerings
of ECS 154B with different instructors. Despite being a researcher
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Cycle=10 Cycles > ?

? : print this help

q : quit

number : move forward this many cycles
Cycle=10 Cycles > 1

MEM/WB: MEMWBBundle(writereg -> 8, aluresult -> 0, readdata ->

< 4294967187, pcplusfour -> 32, wbcontrol -> WBControl(toreg -> 0,
— regwrite -> 1))

EX/MEM: EXMEMBundle(writereg -> 9, readdata2 -> 0, aluresult -> 0,
< nextpc -> 36, pcplusfour -> 36, mcontrol -> MControl(memread ->
< @, memwrite -> @, taken -> @, maskmode -> @, sext -> 1),

— wbcontrol -> WBControl(toreg -> @, regwrite -> 1))

ID/EX: IDEXBundle(writereg -> 10, funct7 -> @, funct3 -> @, imm -> 0,
< readdata2 -> @, readdatal -> @, pc -> 36, pcplusfour -> 40,

< excontrol -> EXControl(add -> @, immediate -> 1, alusrcl -> 0,
< branch -> @, jump -> @, prediction -> @), mcontrol ->

< MControl(memread -> @, memwrite -> @, taken -> @, maskmode -> @,
— sext -> 1), wbcontrol -> WBControl(toreg -> 0, regwrite -> 1),
< rsl -> 0@, rs2 -> @, branchpc -> 36)

DASM(593)

IF/ID: IFIDBundle(instruction -> 1427, pc -> 40, pcplusfour -> 44)
PC: 44

Cycle=11 Cycles >

Listing 3: Detailed debugging output from the single stepper
included with the DINO CPU.

in the field of computer architecture for many years, this is the first
time the second instructor has taught ECS 154B. The instructor had
no prior experience with Chisel, nor did they have experience with
RISC-V. Even without the prior experience the second instructor
has found that they can take the provided assignments, modify
them so as not to be identical to the publicly available DINO CPU,
and solve them all on average of 4 hours.

There have been some advantages and disadvantages that the
second instructor experienced during this quarter. The advantages
the instructor has found thus far are:

e Ease of tool-chain setup

o Ability to easily modify existing assignments and to solve
them

o Reduced overhead of managing assignments

The disadvantages the instructor has found thus far are:

e Questions that arise are difficult
e Many different languages/tools used

Ease of toolchain setup. The second instructor was able to setup
the tool chain on OS-X with minimal effort. The requirements of
VirtualBox and Vagrant were able to be met by simply installing
them using the downloadable installers. Once Vagrant had been
installed getting the rest of the tools setup were mainly cloning
the DINO CPU and starting Vagrant. The biggest challenge the
instructor found was not remembering to change directory into
dinocpu before running singularity.

Ease of updating assignments. The assignments already had signifi-
cant structure and well-written instructions, so making modifica-
tions for the second offering of ECS 154B was fairly straightforward.
The instructor found that the most challenging (though not excep-
tionally challenging) part of updating the assignments were figuring
out the parts of the testing infrastructure that needed to be modified
to accomodate the modified assignments.

Reduced overhead of managing assignments. The instructor has
found that there have been a relatively low number of questions
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on the assignments as compared to past experience with Logisim
assignments from prerequisite course (ECS 154A). The number
of students that have attended office hours needing help on the
assignments has been almost non-existent this quarter.

Questions that arise are difficult. There have been fairly few ques-
tions that have arisen this quarter; however, those that have arisen
have been more complicated to answer. One common problem
that arose was that the Chisel optimizer completely optimized out
the register file and the error that was output was “Cannot find
cpu.registers.regs_5 in symbol table”. This problem occured
because the write enable never was set to true so the register file
would only ever output zeros. Fortunately, some of these difficult
issues have been uncovered over the past months and have been
added to the common issues.

Many different languages/tools used. There are many tools and lan-
guages being used in the DINO CPU projects. The use of Chisel,
Scala, Java, Singularity, etc. makes it challenging to understand
all of the parts and how they interact with one another. The file
structure of projects makes it fairly easy to track issues down and
to modiify the necessary parts.

4.2 Lessons Learned: What can be improved

Chisel is still a young language that is in flux with an average of 5-
10 commits in the main Chisel repository weekly. Unfortunately, the
simulator we used for debugging and testing applications required
Chisel features that were not yet part of an official release. Since
we could not use an official release supplied by the Scala package
manager, we had to distribute our own compiled versions of Chisel
and all of its dependencies to the students. This lead to bloated
containers and long build times. We expect that Chisel will become
more stable in the future, and we will be able to distribute DINO
CPU with supported Chisel releases.

Another problem we ran into while using the relatively young
Chisel language was that the documentation could be improved.
The Chisel bootcamp [1] is a fantastic resource. However, most of
the Chisel documentation targets graduate students and profession-
als with architecture and digital design background. Therefore, we
supplemented this documentation with our own slimmed down doc-
umentation which only contained details required for completing
the DINO CPU assignments.

Many of the student complaints were related to limited docu-
mentation. One of our main focuses while improving the DINO
CPU will be to improve the documentation both for Chisel and for
the DINO CPU more generally.

Finally, the biggest pain point in using DINO CPU in our classes
has been students trying to debug their hardware. We believe this
stems from two places: a misunderstanding of digital design logic
and a lack of debugging support.

First, computer science students are often confused by the fact
that Chisel is only describing hardware and not a programming
language. We found many examples of students re-assigning the
same wire twice as the example in Listing 4. The students expected
that line 1 would execute first followed by line 3 like an imperative
program. However, since this is describing hardware the above
lines actually mean “Connect the output wire from pcPlusFour
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1pc := pcPlusFour.io.output
2...
3pc := branchAdd.io.result

Listing 4: Example common mistake. The students fre-
quently left out multiplexers because they assumed the code

was executed imperatively.

"How much time did this assignment take?"

60%
2 EWQL2msQL2
é 20% EWQL3 msQL3
3 40%
&
+ 30%
S 20%
8
5 10%
o
0%

<5

10-20 >20

Hours

Figure 3: Time spent on second and third assignments.

to the pc register. ... connect the output wire from the branchAdd
to the pc register” The second statement overwrites the first. In
the future, we believe that a Chisel or FIRRTL pass which detects
overwritten wires may help to give warnings or errors when this
misunderstanding occurs.

Second, 37% of the class that provided feedback on one of the
labs specifically mentioned that lack of debugging support made
the assignment more difficult. The first time we used DINO CPU,
we did not provide the students a way to “single step” through
the execution of examples. There was significant frustration when
running the applications on the simulator because it would fail
after 100s or 1000s of cycles and there was no way to easily track
the execution over time.

To partially alleviate this issues, we implemented a single step
feature in our simulator as shown in Section 3.2 which allows
students to step one cycle at a time and investigate the current state
of the registers. We are currently working on extending this to be
more feature rich. For instance, we would like the students to be
able to print the value of any wire or register when the simulation is
paused like gdb’s print command. The use of the single step feature
in this quarter appears to have reduced the amount of time students
have spent on the assignments. Figure 3 shows the amount of time
the students have reported they spend working on the assignments.

4.3 Using DINO CPU for future assignments

DINO CPU is an open source project, and we hope that our effort
can be leveraged by other instructors. There are a number of ways
to make minor changes to the CPU pipeline that will not affect
functional correctness, but do require significantly different Chisel
code. By making some of these minor modifications each time the
assignments are used, we believe it will reduce the incidence of
cheating. A few ideas are below.

e Change the way branches are resolved by changing the in-
puts on the branch control unit or merging the branch con-
trol unit with the ALU.

e Changing the meaning of the ALU control unit signals.
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o Changing the way the auipc instruction is implemented (i.e.,
how the PC moves through the pipeline).

Changing the way the zero register is implemented.
Moving the branch resolution logic to the decode stage.
Changing the I/O for the control unit.

Change the I/O for the data memory (e.g. change maskmode
and sext to just funct3)

Additionally, we have implemented a couple of extensions to the
DINO CPU in our classes, but many other extensions are possible.

e Add a branch predictor. We added a branch predictor to the
decode stage, but it could be moved to the fetch stage.

e Adding more stages to the pipeline or removing stages from
the pipeline.

o Updating the instruction and data memory interfaces to work
asynchrounously instead of sequentially and then adding
caches will be possible.

e Adding multiple issue (e.g., 2-way superscalar) should be
straightforward even without scoreboarding.

o Implementing more RISC-V instructions (e.g., floating point,
compressed instructions, etc.)

Finally, we are working to extend the DINO CPU to implement a
subset of the privileged instructions to be able to execute interrupts
and exceptions. With this support, we believe students could even
write simple operating systems that can execute on the DINO CPU.

5 CONCLUSIONS

After using the DINO CPU for two quarters, we believe that it
has improved the learning outcomes in our computer architecture
course. We are currently working to improve the DINO CPU, and
we plan to continue improving it as we use it in future classes.
The code, tools, and documentation for the DINO CPU are avail-
able on GitHub at https://github.com/jlpteaching/dinocpu. The
DINO CPU is an open source project, and we welcome any contru-
bitions from the community. We look forward to working with the
architecture education community to improve the DINO CPU.
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