
HammerSim: A Tool to Model Rowhammer
Kaustav Goswami, Ayaz Akram, Hari Venugopalan, Jason Lowe-Power

{kggoswami,yazakram,hvenugopalan,jlowepower}@ucdavis.edu
University of California, Davis

ABSTRACT
Recently the rowhammer vulnerability has affected modern mem-
ory devices, which allows an attacker to cause bitflips without
accessing the corresponding cell. The rowhammer effects can ex-
acerbate future memory technologies due to scaling. Hence, we
need to invest in studying and mitigating rowhammer attacks. We,
therefore, propose a model to simulate RowHammer in gem5 to
capture the system-level interaction of RowHammer.

1 INTRODUCTION
Dynamic random access memory, or DRAM, is the de-facto choice
for main memory design due to its cost-effectiveness. However,
due to scaling, researchers have noticed variations in the nominal
parameters of these devices [6, 18, 32]. Recently, it has been found
that accessing (or ACTivating) a particular cell of a DRAM module
repeatedly causes data corruption in the neighborhood. This is
called RowHammer [4, 15]. There have been extensive studies done
to study and mitigate rowhammer [2, 15, 17, 25, 29]. Most of such
variations or data corruptions are unfortunately not captured in
simulators [8].

We aim at closing the gap between DRAM DIMMs and its simu-
lated counterpart along the lines of RowHammer. Researchers have
characterized bitflips in the past [1, 23, 24, 30]. There exists circuit-
level models to simulate RowHammer [13]. FPGAs help in studying
RowHammer with software-based memory controllers [11, 21].
However, this approach necessitates specialized setup. Currently
we do not posses a comprehensive model of RowHammer at the
system level. Developing such a model is crucial as this enables us
to study the interaction of workloads and data-corruption alongside
estimating the behavior of future DRAM technology.

As a precursor to the simulation model of RowHammer, we
performed extensive hammering on different DRAM modules (or
DIMMs1). The analytical model of RowHammer that people reply
on assumes an equally likely probability of a bitflip in a DRAM
row when the number of accesses crosses a certain threshold in the
neighborhood [2, 15, 17, 25, 29]. We saw that this is not the case on
actual DRAMDIMMs. Most unique bitflips saturate over time as not
all regions of the memory are vulnerable. This is shown in Figure 1,
where we see that the number of unique bitflips saturates over
time. This information is not previously captured while modeling
RowHammer, which can largely influence the future designs of
mitigation techniques.

Modeling the aforementioned reliabilitywould enable researchers
to estimate the probability of obtaining the correct output of a pro-
gram in a non-trusted environment like the cloud. The RowHammer
threshold is decreasing as DRAMs are becoming denser [14], which
motivates the need for such a model. In this abstract, we propose
1A DIMM refers to dual inline memory module.

YArch ’23, March 26, 2023, Vancouver, Canada
.

0 200 400 600 800 1000
Number of hammering runs

10

20

30

40

50

of

 u
ni

qu
e

bi
tfl

ip
s

Row 1898 (1Rx16)
Row 8024 (1Rx8)
Row 1278 (1Rx8)

Figure 1: Count of unique bitflips on different DRAMDIMMs’
row.

a system-level RowHammer model called HammerSim, which we
have integrated with gem5 [19].

2 METHODOLOGY
Our objective is to model RowHammer closely to its hardware
counterpart. Toward this, we have attempted to reproduce bitflips
on real DDR4 DIMMs. Based on our findings and previous literature,
we conclude that RowHammer is a result of a combination of several
probability distributions. These distributions are primarily based
on the inherent variations induced during manufacturing time [15,
23, 31]. However, there is no deterministic correlation between
process variation and RowHammer [15]. We observed that a weak
memory cell (or a capacitor) may or may not exhibit a bitflip under
a RowHammer attack. This adds to the randomness of RowHammer.
This is a consistent observation across several attack papers, where
at each hammering instance, a vulnerable bit does not always flip [7,
12, 23, 27, 28, 31]. Figure 2 shows instances of bitflips on a single
row (1278), across 4 different runs. A white dot represents a bitflip
in a column. Figure 2(f) plots the histogram of bitflip count across
1000 hammering instances.

2.1 Simulation Model
Overall, we have the following probabily distributions for modelling
rowhammer bitflips:

2.1.1 A model for process variaiton. We model a variation map
based on VARIUS [26], a statistical model of process variation. It
models process variation as a multivariate normal distribution. The
outcome is a binary decision: whether a given cell or a capacitor
is weak or a strong cell? This is represented as WC, or weak cell in
Equation 1.

2.1.2 Uniform probability for flipping a bit. For a given weak cell
WC, we use a uniform probability function to flip the cell. This is a
property of the DIMM.We experimentally determine the probability
which ranges from 1

5×1010 to
1

5×108 for a bitflip. This can be tuned by
the user in the simulation framework. F_WC represents a flippable
bit in Equation 1

2.1.3 Probability escalation of an N-sided rowhammer attack. This
probability distribution is correlated with the other aggressor rows
in the neighborhood. For this, we use counter-pairs while counting

(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4 (e) Superim-
posed Image

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Index of a capacitor
0

1000

2000

3000

4000

Co
un

t o
f B

itf
lip

s

Number of bitflips on row 1278 (x8)

(f) Histogram of bitflip counts on row number 1278 across 1000 runs.

Figure 2: Observed bitflips on a single row on awidth 8DRAM
DIMM.

ACTs. This is also a property of the DIMM.We use an experimentally
determined probability of 1

2.5×103 for the same.

2.1.4 Half-double. Half-double [9, 16] can only be modeled via
counters of triggering a bitflip. For every ACT on a row, we have to
maintain counters for each of the rows (4) in the blast radius. This
is not trivial to maintain as checking the memory after each ACT
increase the simulation time exponentially. Therefore, we simply
monitor half-double access patterns only during a refresh event.

We combine these aforementioned probability distributions in a
conventional manner, which is given by:

𝑃𝑏𝑖𝑡 𝑓 𝑙𝑖𝑝 = 𝑃 (𝑊𝐶 |𝐹_𝑊𝐶) × 1
𝑃 (𝑛–𝑠𝑖𝑑𝑒𝑑) ×

1
𝑃 (ℎ𝑎𝑙 𝑓 –𝑑𝑜𝑢𝑏𝑙𝑒) (1)

3 ANALYSIS
HammerSim is implemented on gem5 [19], a full-system cycle-level
simulator. We modeled the probability distributions of RowHam-
mer (referred to in Section 2) within gem5’s memory interface. In
addition, we have also modeled the mitigation mechanism installed
on one of the DRAM vendors using the reverse-engineered under-
standing of the same depicted in U-TRR [10]2. The RowHammer
bitflip map generated via gem5 is shown in Figure 3. Figures 3(a)–
3(e) simulate bitflips in gem5 with a variation map taken from the
actual DRAM DIMM. The measured similarity index between the
real and the simulated run is 0.31 in terms of JS Divergence [22]
value (lower is better). The lower set of images represents bitflips
with a statistically generated variation map.

This abstract does a general analysis of RowHammer conse-
quences onHPCworkloads taken fromGAPBS [5] and NAS-Parallel
benchmark suite [3]. We simulate an x86 system with 2 levels of
caches (L1: 32KB + 32KB; L2: 256KB). Figure 4 shows the instances
of row ACTs crossing the LPDDRx (16.8K – 4.8K), DDR4 (45K) and
DDR3 (139K) thresholds. We see that there are 20041.16 instances
on average, where rows cross the DDR4 threshold of 45K ACTs.
The figure is worse for LPDDR [20] DIMMs, where the threshold

2correspond’s to U-TRR’s Vendor B.

(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4 (e) Superim-
posed Image

(f) Run 1 (g) Run 2 (h) Run 3 (i) Run 4 (j) Superim-
posed Image

Figure 3: Simulated result of bitflips on a single row. The
top set of runs used the variation map taken from the actual
DRAMDIMMs. The bottom set is generated using a statistical
model of process variation.

count is even lower. The threshold is likely to be even lower for
DDR5 DRAM DIMMs.

bt.c cg.c ft.c is.c lu.c mg.c sp.c bc bfs cc pr tc
0.0

0.2

0.4

0.6

0.8

1.0
Co

un
t o

f I
ns

ta
nc

es
1e6

> 4800 ACTs
> 16800 ACTs
> 45000 ACTs
> 139000 ACTs

Figure 4: Observed instances of ACT count crossing 4.8K, 16.8K
(LPDDRx), 45K (DDR4) and 139K (DDR3).

We did a bitflip estimation of RowHammer by probabilistically
flipping bits during runtime. We tuned the probability of a bitflip
from 1

109 to 1 for each of these benchmarks. Figure 5 plots the same.
This shows that even benign applications have a significant proba-
bility of flipping bits. Note that for this experiment, we have only
considered N-sided probability. This value is predicted to worsen
due to increasing density.

10^(-9)
10^(-8)

10^(-7)
10^(-6)

10^(-5)
10^(-4)

10^(-3)
10^(-2)

10^(-1) 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
Probability of a Bitflip

0

100000

200000

300000

400000

Co
un

t o
f B

itf
lip

s

bt.c
cg.c
ft.c
is.c
lu.c
mg.c
sp.c
bc
bfs
cc
pr
tc

Figure 5: Estimation of bitflips by varying the probability of
a bitflip.

4 CONCLUSION
In this abstract, we have proposed a preliminary model of RowHam-
mer. The model is presented as a tool called HammerSim, which is

2

implemented in a full-system simulator. This allows us to study the
interaction between data-corruption and real-world workloads. In
the future, we plan on quantitatively evaluating RowHammer and
its mitigation as a metric at the system-level using HammerSim.
Furthermore, we plan on extending this infrastructure to simulate
cloud environments with malicious programs running alongside
benign applications to create a more realistic scenario.

REFERENCES
[1] Barbara Aichinger. 2015. DDR memory errors caused by Row Hammer. In

2015 IEEE High Performance Extreme Computing Conference (HPEC). 1–5. https:
//doi.org/10.1109/HPEC.2015.7322462

[2] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna
Das, Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL: Software-
Based Protection Against Next-Generation Rowhammer Attacks. In Proceed-
ings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (Atlanta, Georgia, USA) (ASP-
LOS ’16). Association for Computing Machinery, New York, NY, USA, 743–755.
https://doi.org/10.1145/2872362.2872390

[3] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. 1991. The NAS Parallel Benchmarks. The International Journal of
Supercomputing Applic ations 5, 3 (1991), 63–73.

[4] Kuljit S. Bains and John B. Halbert. 2012. Distributed row hammer tracking. US
Patent US20140095780A1.

[5] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP Benchmark
Suite. arXiv preprint arXiv:1508.03619 (2015).

[6] S. Borkar. 2005. Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation. IEEE Micro 25, 6 (2005),
10–16. https://doi.org/10.1109/MM.2005.110

[7] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:
Exploiting the Many Sides of Target Row Refresh. arXiv:2004.01807 [cs.CR]
https://arxiv.org/abs/2004.01807

[8] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk Lee, Kais
Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee,
Aditya Agrawal, Mike O’Connor, and Onur Mutlu. 2018. What Your DRAM
Power Models Are Not Telling You: Lessons from a Detailed Experimental Study.
Proc. ACM Meas. Anal. Comput. Syst. 2, 3, Article 38 (dec 2018), 41 pages. https:
//doi.org/10.1145/3224419

[9] Google LLC. 2021. “Half-Double”: Next-Row-Over Assisted Rowhammer.
, 22 pages. https://raw.githubusercontent.com/google/hammer-kit/main/
20210525_half_double.pdf

[10] Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh
Razavi, and Onur Mutlu. 2021. Uncovering In-DRAM RowHammer Protection
Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implica-
tions. https://doi.org/10.48550/ARXIV.2110.10603

[11] Hasan Hassan, Nandita Vijaykumar, Samira Khan, Saugata Ghose, Kevin Chang,
Gennady Pekhimenko, Donghyuk Lee, Oguz Ergin, and Onur Mutlu. 2017.
SoftMC: A flexible and practical open-source infrastructure for enabling experi-
mental DRAM studies. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 241–252.

[12] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi.
2022. BLACKSMITH: Scalable Rowhammering in the Frequency Domain. In 2022
IEEE Symposium on Security and Privacy (SP). 716–734. https://doi.org/10.1109/
SP46214.2022.9833772

[13] Yichen Jiang, Huifeng Zhu, Dean Sullivan, Xiaolong Guo, Xuan Zhang, and Yier
Jin. 2021. Quantifying Rowhammer Vulnerability for DRAM Security. In 2021
58th ACM/IEEE Design Automation Conference (DAC). 73–78. https://doi.org/10.
1109/DAC18074.2021.9586119

[14] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan Hassan, Roknoddin Azizi,
Lois Orosa, and Onur Mutlu. 2020. Revisiting rowhammer: An experimental
analysis of modern dram devices and mitigation techniques. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). IEEE,
638–651.

[15] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In Proceeding of the 41st Annual International Symposium on Computer Architecture.
IEEE Press.

[16] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas
Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double: Ham-
mering From the Next Row Over. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 3807–3824. https://www.usenix.

org/conference/usenixsecurity22/presentation/kogler-half-double
[17] Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. 2019.

TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters.
In Proceedings of the 46th International Symposium on Computer Architecture
(Phoenix, Arizona) (ISCA ’19). Association for Computing Machinery, New York,
NY, USA, 385–396. https://doi.org/10.1145/3307650.3322232

[18] Kevin Loughlin, Stefan Saroiu, AlecWolman, Yatin A.Manerkar, and Baris Kasikci.
2022. MOESI-Prime: Preventing Coherence-Induced Hammering in Commod-
ity Workloads. In Proceedings of the 49th Annual International Symposium on
Computer Architecture (New York, New York) (ISCA ’22). Association for Comput-
ing Machinery, New York, NY, USA, 670–684. https://doi.org/10.1145/3470496.
3527427

[19] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. 2020. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152 (2020).

[20] Micron Technology. 2005. TN-46-12: Mobile DRAM Power-Saving Features and
Power Calculations. Technical Report TN46_12.

[21] Onur Mutlu and Jeremie S. Kim. 2020. RowHammer: A Retrospective. Trans.
Comp.-Aided Des. Integ. Cir. Sys. 39, 8 (aug 2020), 1555–1571. https://doi.org/10.
1109/TCAD.2019.2915318

[22] Notes on AI. [n. d.]. Jensen-Shannon Divergence. https://notesonai.com/Jensen%
E2%80%93Shannon+Divergence.

[23] Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park,
Hasan Hassan, Minesh Patel, Jeremie S. Kim, and Onur Mutlu. 2021. A Deeper
Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM
Chips and Implications on Future Attacks and Defenses. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
1182–1197. https://doi.org/10.1145/3466752.3480069

[24] Kyungbae Park, Donghyuk Yun, and Sanghyeon Baeg. 2016. Statistical distribu-
tions of row-hammering induced failures in DDR3 components. Microelectronics
Reliability 67 (2016), 143–149. https://doi.org/10.1016/j.microrel.2016.10.014

[25] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, and Jae W.
Lee. 2020. Graphene: Strong yet Lightweight Row Hammer Protection. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–13. https://doi.org/10.1109/MICRO50266.2020.00014

[26] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.
2008. VARIUS: A Model of Process Variation and Resulting Timing Errors for
Microarchitects. IEEE Transactions on Semiconductor Manufacturing 21, 1 (2008),
3–13. https://doi.org/10.1109/TSM.2007.913186

[27] Andre Schaller, Wenjie Xiong, Nikolaos Athanasios Anagnostopoulos, Muham-
mad Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub Szefer.
2017. Intrinsic Rowhammer PUFs: Leveraging the Rowhammer effect for im-
proved security. In 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE. https://doi.org/10.1109/hst.2017.7951729

[28] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat 15 (2015), 71.

[29] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Making
DRAM Stronger Against Row Hammering. In Proceedings of the 54th Annual
Design Automation Conference 2017 (Austin, TX, USA) (DAC ’17). Association
for Computing Machinery, New York, NY, USA, Article 55, 6 pages. https:
//doi.org/10.1145/3061639.3062281

[30] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Defeating
Software Mitigations Against Rowhammer: A Surgical Precision Hammer. In
Research in Attacks, Intrusions, and Defenses, Michael Bailey, Thorsten Holz,
Manolis Stamatogiannakis, and Sotiris Ioannidis (Eds.). Springer International
Publishing, Cham, 47–66.

[31] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-
tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
2016. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 1675–1689. https://doi.org/10.1145/2976749.2978406

[32] B. Zhao, Y. Du, J. Yang, and Y. Zhang. 2013. Process Variation-Aware Nonuniform
CacheManagement in a 3DDie-StackedMulticore Processor. IEEE Trans. Comput.
62, 11, 2252–2265. https://doi.org/10.1109/TC.2012.129

3

https://doi.org/10.1109/HPEC.2015.7322462
https://doi.org/10.1109/HPEC.2015.7322462
https://doi.org/10.1145/2872362.2872390
https://doi.org/10.1109/MM.2005.110
https://arxiv.org/abs/2004.01807
https://arxiv.org/abs/2004.01807
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://raw.githubusercontent.com/google/hammer-kit/main/20210525_half_double.pdf
https://raw.githubusercontent.com/google/hammer-kit/main/20210525_half_double.pdf
https://doi.org/10.48550/ARXIV.2110.10603
https://doi.org/10.1109/SP46214.2022.9833772
https://doi.org/10.1109/SP46214.2022.9833772
https://doi.org/10.1109/DAC18074.2021.9586119
https://doi.org/10.1109/DAC18074.2021.9586119
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://doi.org/10.1145/3307650.3322232
https://doi.org/10.1145/3470496.3527427
https://doi.org/10.1145/3470496.3527427
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://notesonai.com/Jensen%E2%80%93Shannon+Divergence
https://notesonai.com/Jensen%E2%80%93Shannon+Divergence
https://doi.org/10.1145/3466752.3480069
https://doi.org/10.1016/j.microrel.2016.10.014
https://doi.org/10.1109/MICRO50266.2020.00014
https://doi.org/10.1109/TSM.2007.913186
https://doi.org/10.1109/hst.2017.7951729
https://doi.org/10.1145/3061639.3062281
https://doi.org/10.1145/3061639.3062281
https://doi.org/10.1145/2976749.2978406
https://doi.org/10.1109/TC.2012.129

	Abstract
	1 Introduction
	2 Methodology
	2.1 Simulation Model

	3 Analysis
	4 Conclusion
	References

