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ABSTRACT
Recently the rowhammer vulnerability has affected modern mem-
ory devices, which allows an attacker to cause bitflips without
accessing the corresponding cell. The rowhammer effects can ex-
acerbate future memory technologies due to scaling. Hence, we
need to invest in studying and mitigating rowhammer attacks. We,
therefore, propose a model to simulate RowHammer in gem5 to
capture the system-level interaction of RowHammer.

1 INTRODUCTION
Dynamic random access memory, or DRAM, is the de-facto choice
for main memory design due to its cost-effectiveness. However,
due to scaling, researchers have noticed variations in the nominal
parameters of these devices [6, 18, 32]. Recently, it has been found
that accessing (or ACTivating) a particular cell of a DRAM module
repeatedly causes data corruption in the neighborhood. This is
called RowHammer [4, 15]. There have been extensive studies done
to study and mitigate rowhammer [2, 15, 17, 25, 29]. Most of such
variations or data corruptions are unfortunately not captured in
simulators [8].

We aim at closing the gap between DRAM DIMMs and its simu-
lated counterpart along the lines of RowHammer. Researchers have
characterized bitflips in the past [1, 23, 24, 30]. There exists circuit-
level models to simulate RowHammer [13]. FPGAs help in studying
RowHammer with software-based memory controllers [11, 21].
However, this approach necessitates specialized setup. Currently
we do not posses a comprehensive model of RowHammer at the
system level. Developing such a model is crucial as this enables us
to study the interaction of workloads and data-corruption alongside
estimating the behavior of future DRAM technology.

As a precursor to the simulation model of RowHammer, we
performed extensive hammering on different DRAM modules (or
DIMMs1). The analytical model of RowHammer that people reply
on assumes an equally likely probability of a bitflip in a DRAM
row when the number of accesses crosses a certain threshold in the
neighborhood [2, 15, 17, 25, 29]. We saw that this is not the case on
actual DRAMDIMMs. Most unique bitflips saturate over time as not
all regions of the memory are vulnerable. This is shown in Figure 1,
where we see that the number of unique bitflips saturates over
time. This information is not previously captured while modeling
RowHammer, which can largely influence the future designs of
mitigation techniques.

Modeling the aforementioned reliabilitywould enable researchers
to estimate the probability of obtaining the correct output of a pro-
gram in a non-trusted environment like the cloud. The RowHammer
threshold is decreasing as DRAMs are becoming denser [14], which
motivates the need for such a model. In this abstract, we propose
1A DIMM refers to dual inline memory module.
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Figure 1: Count of unique bitflips on different DRAMDIMMs’
row.

a system-level RowHammer model called HammerSim, which we
have integrated with gem5 [19].

2 METHODOLOGY
Our objective is to model RowHammer closely to its hardware
counterpart. Toward this, we have attempted to reproduce bitflips
on real DDR4 DIMMs. Based on our findings and previous literature,
we conclude that RowHammer is a result of a combination of several
probability distributions. These distributions are primarily based
on the inherent variations induced during manufacturing time [15,
23, 31]. However, there is no deterministic correlation between
process variation and RowHammer [15]. We observed that a weak
memory cell (or a capacitor) may or may not exhibit a bitflip under
a RowHammer attack. This adds to the randomness of RowHammer.
This is a consistent observation across several attack papers, where
at each hammering instance, a vulnerable bit does not always flip [7,
12, 23, 27, 28, 31]. Figure 2 shows instances of bitflips on a single
row (1278), across 4 different runs. A white dot represents a bitflip
in a column. Figure 2(f) plots the histogram of bitflip count across
1000 hammering instances.

2.1 Simulation Model
Overall, we have the following probabily distributions for modelling
rowhammer bitflips:

2.1.1 A model for process variaiton. We model a variation map
based on VARIUS [26], a statistical model of process variation. It
models process variation as a multivariate normal distribution. The
outcome is a binary decision: whether a given cell or a capacitor
is weak or a strong cell? This is represented as WC, or weak cell in
Equation 1.

2.1.2 Uniform probability for flipping a bit. For a given weak cell
WC, we use a uniform probability function to flip the cell. This is a
property of the DIMM.We experimentally determine the probability
which ranges from 1

5×1010 to
1

5×108 for a bitflip. This can be tuned by
the user in the simulation framework. F_WC represents a flippable
bit in Equation 1

2.1.3 Probability escalation of an N-sided rowhammer attack. This
probability distribution is correlated with the other aggressor rows
in the neighborhood. For this, we use counter-pairs while counting
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(f) Histogram of bitflip counts on row number 1278 across 1000 runs.

Figure 2: Observed bitflips on a single row on awidth 8DRAM
DIMM.

ACTs. This is also a property of the DIMM.We use an experimentally
determined probability of 1

2.5×103 for the same.

2.1.4 Half-double. Half-double [9, 16] can only be modeled via
counters of triggering a bitflip. For every ACT on a row, we have to
maintain counters for each of the rows (4) in the blast radius. This
is not trivial to maintain as checking the memory after each ACT
increase the simulation time exponentially. Therefore, we simply
monitor half-double access patterns only during a refresh event.

We combine these aforementioned probability distributions in a
conventional manner, which is given by:

𝑃𝑏𝑖𝑡 𝑓 𝑙𝑖𝑝 = 𝑃 (𝑊𝐶 |𝐹_𝑊𝐶) × 1
𝑃 (𝑛–𝑠𝑖𝑑𝑒𝑑) ×

1
𝑃 (ℎ𝑎𝑙 𝑓 –𝑑𝑜𝑢𝑏𝑙𝑒) (1)

3 ANALYSIS
HammerSim is implemented on gem5 [19], a full-system cycle-level
simulator. We modeled the probability distributions of RowHam-
mer (referred to in Section 2) within gem5’s memory interface. In
addition, we have also modeled the mitigation mechanism installed
on one of the DRAM vendors using the reverse-engineered under-
standing of the same depicted in U-TRR [10]2. The RowHammer
bitflip map generated via gem5 is shown in Figure 3. Figures 3(a)–
3(e) simulate bitflips in gem5 with a variation map taken from the
actual DRAM DIMM. The measured similarity index between the
real and the simulated run is 0.31 in terms of JS Divergence [22]
value (lower is better). The lower set of images represents bitflips
with a statistically generated variation map.

This abstract does a general analysis of RowHammer conse-
quences onHPCworkloads taken fromGAPBS [5] and NAS-Parallel
benchmark suite [3]. We simulate an x86 system with 2 levels of
caches (L1: 32KB + 32KB; L2: 256KB). Figure 4 shows the instances
of row ACTs crossing the LPDDRx (16.8K – 4.8K), DDR4 (45K) and
DDR3 (139K) thresholds. We see that there are 20041.16 instances
on average, where rows cross the DDR4 threshold of 45K ACTs.
The figure is worse for LPDDR [20] DIMMs, where the threshold

2correspond’s to U-TRR’s Vendor B.
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Figure 3: Simulated result of bitflips on a single row. The
top set of runs used the variation map taken from the actual
DRAMDIMMs. The bottom set is generated using a statistical
model of process variation.

count is even lower. The threshold is likely to be even lower for
DDR5 DRAM DIMMs.
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Figure 4: Observed instances of ACT count crossing 4.8K, 16.8K
(LPDDRx), 45K (DDR4) and 139K (DDR3).

We did a bitflip estimation of RowHammer by probabilistically
flipping bits during runtime. We tuned the probability of a bitflip
from 1

109 to 1 for each of these benchmarks. Figure 5 plots the same.
This shows that even benign applications have a significant proba-
bility of flipping bits. Note that for this experiment, we have only
considered N-sided probability. This value is predicted to worsen
due to increasing density.
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Figure 5: Estimation of bitflips by varying the probability of
a bitflip.

4 CONCLUSION
In this abstract, we have proposed a preliminary model of RowHam-
mer. The model is presented as a tool called HammerSim, which is

2



implemented in a full-system simulator. This allows us to study the
interaction between data-corruption and real-world workloads. In
the future, we plan on quantitatively evaluating RowHammer and
its mitigation as a metric at the system-level using HammerSim.
Furthermore, we plan on extending this infrastructure to simulate
cloud environments with malicious programs running alongside
benign applications to create a more realistic scenario.
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